Sound Waves

Let Pressie be described by

$$
\begin{aligned}
& P(x, t)=P_{0}+P^{\prime}(x, t) \\
& \uparrow \hat{L}_{\text {deverace }} \\
& \begin{array}{l}
\text { average } \\
\text { equilibrium equilibrium }
\end{array} \\
& \text { pressure }
\end{aligned}
$$

And density be:

$$
\begin{array}{cc}
\rho(x, t)= & \rho_{0}+ \\
\uparrow & \rho^{\prime}(x, t) \\
\text { average } & \text { deviation }
\end{array}
$$

Then it can be shown that

$$
\frac{\partial^{2} p^{\prime}}{\partial x^{2}}=\frac{1}{v_{s}^{2}} \frac{\partial^{2} p^{\prime}}{\partial t^{2}} \text { Classical wave Eq. }
$$

when e $V_{s}=\sqrt{\frac{\gamma P_{0}}{\rho_{0}}}=\begin{aligned} & \text { velocity of } \\ & \text { sound }\end{aligned}$

For airs $\rho_{0}=1.2 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}}=1.2 \frac{\mathrm{~kg}_{g}}{\mathrm{~m}^{3}}$

$$
P_{0}=1 \mathrm{atan}=1.01 \times 10^{5} \mathrm{~Pa}=1.01 \times 10^{5} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}
$$

and $r=\frac{\text { heat capacity at constant pressmen }}{\text { heat capacity at constant tolan }}$

$$
=1.4 \text { for arr }
$$

so $\quad v_{s} \approx 343 \mathrm{~m} / \mathrm{s}$
Impedance per unit area $=\rho_{0} v_{s}=\sqrt{\gamma \rho_{0} P_{0}} \approx 4 / 3 \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{3}}$

$$
=\frac{\text { ratio of sound pressure }}{\text { to particle velocity }}
$$

The acoustic impedance of an a courtic component (such a) a loudspeaker or an organ pipe) i) the ratio of sound pressure to particle velocity at the connection point.

Normal Modes of open \& closed pipes

A pipe or tube can act as a simple musical instrument, with the boundary conditions determining the allowed normal modes (harmonic series). The rules are that
(1) A closed end forces the displacement of The air molecules to be zero, but the pressure change can be non-zero.
(2) An open end forks the pressure change to be zero, but the displacement of air molecules can be non-zero.

	molecule displaument
open end	possur chare
closed end	zero (anti-node) zero (node) (node)
zero	
non-zero (anti-node)	

For a tube closed at both ends, the fundamental molecule displaument

Pressure chime

The $1^{\text {sT }}$ harmonic (incl excited state)

So in this cure the allowed wave kn, th, are multiples of

$$
\begin{aligned}
& L=n\left(\frac{\lambda}{2}\right), n=1,2,3,4 \\
& \lambda_{n}=\frac{2 L}{n}
\end{aligned}
$$

The associated frequencies can be determined by requiring) that $($ wanelumts $) \times($ inquencx $)=$ speed of sound:

$$
\begin{aligned}
& \lambda_{n} F_{n}=v_{s} \\
& F_{n}=\frac{v_{s}}{\lambda_{n}}=\frac{n v_{s}}{2 L}
\end{aligned}
$$

Angular frequencies then are:

$$
\omega_{n}=2 \pi f_{n}=\frac{n \pi r_{s}}{L}
$$

But a tube closed at both ends would make sound that are difficult to hear. So consider one end open, like a trumpet. or clarinet:
molecule displacement

Fundamatil

(ir harmonic
z nd harmonic

Pressure Champ

The pattern is an odd number of $1 / 4$ wavelengths.

$$
\begin{aligned}
& L=n\left(\frac{\lambda_{n}}{4}\right), \quad \text { odd }(n) \text { only } \\
& \lambda_{n}=\frac{4 L}{n}, \text { odd (n) only. } \\
& f_{n}=\frac{v_{3}}{\lambda_{n}}=\frac{n v_{3}}{4 L}, n=1,3,5
\end{aligned}
$$

If the tube is a clarinet, we can effectively shorten the lemth by opening a kay in the middle. This forces the pressure champ to be zero at the location of the key, creations a node in the pressmen change and an anti-node in the molecular displacement.

A tube which is open at both ends, like some organ pipes, wilt have a different set of normal modes, again determined by the boundary conditions.

Mon on longitudinal Oscillations: Elastic Modules

Consider again masses connected by spring:

Assume that all springs on identical and all makes identical.

Eq. of Motion for particle $\# P$:

$$
\begin{aligned}
& m \ddot{x}_{p}=k\left(x_{p+1}-x_{p}\right)-k\left(x_{p}-x_{p-1}\right) \\
& \uparrow \\
& \left(m \omega_{0}^{2}\right) \quad\left(m \omega_{0}^{2}\right) \\
& \ddot{x}_{p}+2 \omega_{0}^{2} x_{p}-\omega_{0}^{2}\left(x_{p+1}+x_{p-1}\right)=\varnothing
\end{aligned}
$$

This Eq. of Motion is identical to that if The loaded string which moves in the transverse clirectoon, However in this system The motion is along the direction of the springs (longitudinal).

We can take the continuum limit to get The Classical wave Equation. First, lets put the (k 's) back in the equation; and let's use ξ (ki) to represent displacement (instead of x):

$$
m \frac{d^{2} \xi(x)}{d t^{2}}=k[(\xi(x+\Delta x)-\xi(x))-(\xi(x)-\xi(x-\Delta x))]
$$

Divide by Δx on both sidles:

$$
\frac{m}{\Delta x} \frac{d^{2} \xi(x)}{d t^{2}}=k\left[\frac{(\xi(x+\Delta x)-\varepsilon(x))}{\Delta x}-\frac{(\xi(x)-\varepsilon(x-\Delta x)}{\Delta x}\right.
$$

Multiply a divide by Δx again on RHS:

$$
\begin{aligned}
& \underbrace{m x}_{\uparrow} \frac{d^{2} \xi(x)}{d t^{2}}=(k \Delta x)\left[\frac{\frac{(\xi(x+\Delta x)-q(x))}{\Delta x}-\frac{(\varepsilon(x)-\xi(x-\Delta x))}{\Delta x}}{\Delta x}\right] \\
& \rho=\frac{\text { mass }}{\substack{\text { density }}}
\end{aligned}
$$

In the limit where $\Delta x \rightarrow \phi$, the RHS become the $z^{\text {nd }}$ spatial derivative: $\frac{d^{2} \xi(x)}{d x^{2}}$

The constant ($k \Delta x$) is a property of the material called the "elastic modulus" or sometimes "Young's Modulus". It has units of

$$
k \Delta x=\frac{N}{m} \cdot m=\text { Newton }=\text { Force. }
$$

We un the symbol $E \equiv K \Delta x=e l a s t i c$ modulus.

So the wave equation for longitudinal oscillations in the continuum limit appear as (usia partial derivatives now)

$$
\frac{\partial^{2} \xi(x, t)}{\partial t^{2}}=\frac{E}{\rho} \frac{\partial^{2} \xi(x, t)}{\partial x^{2}}
$$

And the phase velocity is

$$
\begin{aligned}
& \text { is } \left.\frac{\partial^{2} \xi(x, t)}{\partial x^{2}}=\frac{\rho}{E} \frac{\partial^{2} \xi(x, t)}{\partial t^{2}}\right] \\
& v_{p}=\sqrt{\frac{E}{\rho}}
\end{aligned}
$$

If ow r material is a 3-dimensional Rectangular block, then we should let the density ρ be the mass per unit volume, rather them mass per unit distenus $\left(\frac{\mathrm{kg}}{\mathrm{m}^{3}}\right.$ instead of $\left.\frac{\mathrm{kg}}{\mathrm{m}_{3}}\right)$. Then the units of E should be $\left(\frac{N}{M^{2}}\right)$ rather Than simply (N).

$$
E=E l a s t i c \text { Modulus }=\frac{N}{m^{2}} \text { in } 3 \text { dimensores. }
$$

For steel, $E=2 \times 10^{4} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$ and $\rho=7.75 \times 10^{3} \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$, so the speed of sound is $V_{S}=V_{F}=\frac{E}{\rho}=5 \times 10^{3} \frac{\mathrm{~m}}{\mathrm{~s}}$

Classical Wame Equation.

$$
\frac{\partial^{2} \psi}{\partial x^{2}}=\frac{1}{v^{2}} \frac{\partial^{2} \psi}{\partial t^{2}}
$$

or $\frac{\partial^{2} \psi}{\partial t^{2}}=v^{2} \frac{\partial^{2} \psi}{\partial x^{2}}$

$$
\begin{aligned}
-w^{2} & =v^{2}\left(-k^{2}\right) \\
w & =v k \\
w(k) & =v k
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ques) } \\
& \psi(x, t)= A e^{i(} \\
& c \uparrow \begin{array}{l}
\text { classical } \\
\\
\\
\text { ware. }
\end{array}
\end{aligned}
$$

$$
\psi(x, t)=A e^{i(k x-\omega t)}
$$

"Stiff steel piano wire Equation

$$
\begin{aligned}
& \frac{\partial^{2} \mu}{\partial t^{2}}=v^{2} \frac{\partial^{2} \psi}{\partial x^{2}}-v^{2} \alpha \frac{\partial^{4} \mu}{\partial x^{4}} \\
& -\omega^{2}=v^{2}\left(-k^{2}\right)-v^{2} \alpha\left(k^{4}\right) \\
& \omega(k)=\omega=v k \sqrt{1+\alpha k^{2}}
\end{aligned}
$$

Bun $\psi(x, t)=A e^{i(k x-\omega t)}$

Free Quantarn Particle.

Guest $f \psi(x, t)=A C^{i(k x-\omega t)}$

Water waws:
Small ripple water waves:

$$
\omega(k)=\sqrt{\frac{\sigma k^{3}}{\rho}}=\sqrt{\frac{\sigma}{\rho}} k^{3 / 2}
$$

$\sigma=\operatorname{surface}$ tunsidn

$$
\varphi=\text { densit. }
$$

Long Wavelength in deep water

$$
\begin{gathered}
\omega(k)=\sqrt{g k}=\sqrt{g} k^{\frac{1}{2}} \\
\omega(k) \uparrow
\end{gathered}
$$

In general for any harmonic wace the phase velocity is the ratio of $\frac{\omega}{k}$:

$$
\begin{aligned}
\psi(x, t)=A e^{i(k x-\omega t)} & =A e^{i k\left(x-\frac{\omega}{k} t\right)} \\
& =A e^{i k\left(x-V_{\text {phase }} t\right)} \\
& V_{\text {phase }} \equiv \frac{\omega}{k}
\end{aligned}
$$

For any ste system, the relationship between w and k is called the "dispersion relation" The Classical ware equation has a linear dispersion relation:
$\omega(k)=v_{p} K / \leqslant$ linear dispersion relation (classical wave equation)

Whereas, The loaded string has a non-linear dispersion M(ation: $\omega\left(k_{n}\right)=2 \omega_{0} \sin \left(\frac{k_{n} l}{2}\right) \leqslant$ non-linear dispersion relation (loaded string)
A system which has a linear dispersion relation has a special property: A propagating pulse will travel without changing its shape: pulse Shape
at $t=0$

We can show this as follows. The pulse can be described at a sum over normal modes.
But the normal modes are continuous so the sum over normal modes is a Fowner Transform:

$$
y(x, t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d k A(k) e^{i(k x-\omega t)}
$$

Now suppose that the system has a linear dispersion relation:

$$
\omega=v_{p} k
$$

Then we have

$$
\begin{aligned}
y(x,+) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d k A(k) e^{i\left(k x-\left(v_{p} k\right) t\right)} \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d k A(k) e^{i k(\underbrace{\left.x-v_{p} t\right)}_{\uparrow}}
\end{aligned}
$$

This says that as time goes formane, if wa keep advances X at speed V_{p}, then the value of y will stay the same. So the shape of the pulse does not change

Thentore, if $\omega=\gamma_{p} k$ for the system, then pulses do not disperse. They maintain Their shape.

A linear dispersion relation means that pulses do not disperse.

This is a special case behavior for systems wite linear dispersion relations. But suppon the un have a non-linear dispersion relation.
For example, suppose
$\omega \sim K^{2}$. This happens in quantum mechanics when clescribing a free particle.
In that case,

$$
w=\frac{\hbar k^{2}}{2 m} .
$$

How does a pulse propagate in a sp, ter like this?

$$
\begin{aligned}
y(x, t) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d k A(k) e^{i k x} e^{-i \omega t} \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d k A(k) e^{i k x} e^{-i\left(\frac{\left(\hbar k^{2}\right.}{2 m}\right)+} \\
& =\frac{1}{\sqrt{2} \pi} \int_{-\infty}^{\infty} d k A(k) e^{i k} \underbrace{\left(x-\frac{\hbar k}{2 m} t\right)}_{\sim}
\end{aligned}
$$

Here, a_{1} time goes forward, we need to advance x at a speed of $v_{p}=\frac{\hbar k}{2 m}$ to keep the argument of the exponertios, the sumac.

But the speed $v_{p}=\frac{\hbar k}{2 m}$ is different for every warrant waumber（ K ）．That is each normal mode advances at its own velocity， they do not advance together．This means that景 the various normed modes will disperse，with some travelling fast，and some travelling slowly， and the pulse will dissappea．

$$
\begin{array}{ccc}
t=\phi & t=t_{1} & t=t_{2} \\
\text { pulse }
\end{array}
$$

Thentore the classical wane equation describes systems which have ho dispersion. In these A_{n} systems, a pulse con travel forever. example of this in nature is electromagnetic wares in vacuerm, or waves on an ideal string.)

Information transmishist trans and group velocity
A perfect perfect travelling wave cannot be used to communicate. Because it is a perfect wave, it extends in time to (tland $(\rightarrow$) infinity, and t in space to (t) and (t) infinity To communicate a message, I would need to alter the wane in some way: turn it orff, make it lager, change its frequency, etc. But doing ant of these thongs would mean this the wan is no louger perfect, because it tr would then have multiple frequency component?. So to send a message, I will need multiple frequencies at my disposal.

But if the medium is dispersive, then the various frequency components will all travel at different velocities, and my message will disperse. So then will be some limit to how fan t cm comrumizate.

However, there is a clever way to send information a much longer distance by using a small range of frequancig to create a pulse.
A) long as the dispersion relation is linear our that range of frequeies, tune car mare a pule what travels forever.
To illustrate, imagine that our dispersion relation is linear, but not directly proportional:

Since different waves have different phon velocities, this system is dispersive.
Now I create a pulse-like "eurelope function" compose of a range of wan numbers.

$$
F(x)=\text { a pulse-like Function }=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} F(k) e^{i k x} d k
$$

Fowler tramions
$f(x)$ could bu a gaussion pulse, for exams k :

My claim is that I can make thin pulse propagate in tim forever by multuplyen $f(x)$ by a high frequency perfect travelling wave. Th high frequency wane is known as the "carrier wale"
so let

$$
Z(x)=(\text { pulse }) \times(\text { carrier })=f(x) e^{i k_{c} x}
$$

Where $k_{c}=$ wave number of the high frequency carrie wave
Now $z(x)$ looks like

$$
z(x) \uparrow \begin{array}{r}
\text { high frequen a carrier wame } \\
\text { multiplied bt the } \\
\text { pals function }
\end{array}
$$

The
Claim: ${ }^{\wedge}$ Pulse propasites with anesuen envelope function which does not dissipate:

"the speed at which the envelope propagates".

If this claim is true, then the pulse propagation will be described mathematically as

$f\left(x-v_{g} t\right)$ describes the envelope moving at the group velocity without changing its shape

Now we prove this:

Substitute the Fowir expression for the pulse.

$$
\begin{aligned}
z(x) & =\left[\frac{1}{\sqrt{v i}} \int_{-\infty}^{\infty} d k F(k) e^{i k x} d k\right] e^{i k e x} \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d k F(k) e^{i(k+k c) x}
\end{aligned}
$$

Trick 1: Let Resuratio $K^{\prime}=K+k_{c}$.
Then $k=k^{\prime}-k_{c}$, and we ham

$$
z(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d k^{\prime} F\left(k^{\prime}-k_{c}\right) e^{i k^{\prime} x}
$$

integrate over k^{\prime} now.
This. equation the transform of $z(x)$

But K^{\prime} is just a variable of integration. We can rename it K if wish w.

$$
z(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d k F\left(k-k_{c}\right) e^{i k_{x}} \leftarrow \text { Th Fowler Truatorm }
$$

Now we see that the Fowin Transform of $z(x)$ is $F\left(k-k_{c}\right)$.
Let's make $z(x)$ move aspca forward in time. To dothat we multiply each travelling wave component by $e^{-i \omega(k) t}$:

$$
\begin{aligned}
z(x, t) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d k F\left(k-k_{c}\right) e^{i k x} e^{-i \omega(k) t} \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d k F\left(k-k_{c}\right) e^{i k\left(x-\frac{\omega(k)}{k} t\right)}
\end{aligned}
$$

Now un use our basic assumption: $\omega(k)$ is linear in k :

$$
\left.\omega(k)=\omega_{c}+\left(k-k_{c}\right) \frac{\partial \omega}{\partial k}\right)_{k_{c}}
$$

We call $\left.\frac{\partial w}{\partial k}\right|_{k_{c}}=V_{g}=$ "group velocity".
so $\quad \omega(k)=\omega_{c}+\left(k-k_{c}\right) v_{g}$.
Then ow travelling ware is

$$
\begin{aligned}
z(x, t) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d k F\left(k-k_{c}\right) e^{i k\left(x-\left(\frac{\omega_{c}}{k}+\frac{k v_{g}}{k}-\frac{k_{c} v_{g}}{k}\right)+\right)} \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d k F\left(k-k_{c}\right) e^{i k x} e^{-i \omega_{c} t} e^{-i k v_{g} t} e^{i k_{c} v_{g} t}
\end{aligned}
$$

Trick 2: Let $k^{\prime \prime} \equiv k-k_{e}$. The $k=k^{\prime \prime}+k_{e}$. Therefor

$$
\begin{aligned}
z(x, t) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d k^{n} F\left(k^{n}\right) e^{i\left(k^{n}+k_{c}\right) x} e^{-i \omega_{c} t} e^{-i\left(k^{n}+k_{c}\right) v_{g} t} \cdot e^{i k_{c} v_{g} t} \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d k^{n} F\left(k^{n}\right) \underbrace{e^{i\left(k_{c} x-\omega_{c} t\right)}}_{\text {dorsnot do...l }} e^{i k^{n}\left(x-v_{g} t\right)}
\end{aligned}
$$

$$
z(x, t)=e^{i\left(k_{c} x-\omega_{c} t\right)}\left[\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d k^{n} F\left(k^{4}\right) e^{i k^{4}\left(x-v_{g} t\right)}\right]
$$

This is the Fowler Transfer of the envelopefunction

$$
z(x,+)=F\left(x-v_{g} t\right) e^{i\left(k_{c} x-\omega_{c} t\right)}
$$

This is what we set out to prove: the envelope function $F(x)$ propagate, without changing its shape: $F(x) \rightarrow F\left(x-v_{s}+\right)$. The speed of envelope progagation, known as the group velocity, has bean determined to be

$$
v_{g}=\text { "group velocity" }=\frac{\partial \omega}{\partial k}\left(k=k_{c}\right)
$$

This result is important because any dispersion relation will be approximately linear over a small range of K. So pulses can be sent through any dispersion medina, as long as we use a suffrourtly small range of k to make ow pulses.

Example: Quartuon free particle

