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1 PROBLEM I

1.1 PART I

Consider the dot product inside the integral. The first vector field has the same orientation
and is parallel to the parth at every point in space. Clearly, this dot product will yield a positive
value, so the corresponding integral will be positive as well. The second field is also parallel to
the path, but follows the opposite direction as the path C , therefore this dot product will yield
a negative value, so the circulation integral is negative. The last vector field is orthogonal
to the path C at every point, so the dot product will yield zero in this case, therefore the
circulation is zero.

1.2 PART II

Consider the vector field v = y

x

2+y

2+z

2 x̂ ° x

x

2+y

2+z

2 ŷ (see Fig. 1.1.) The vector field is exactly
parallel to the path at every point in space! So the dot product can be computed directly
without doing any calculations, because the dot product will simply yield one, divided by the
normalization (this is easier to see if you rewrite v = u/||u||2, where u = y x̂ °x ŷ), as follows:
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R (1.1)

For parts (iii) through (iv) you can simply compute the formula given in the homework, which
in turn is just equal to the following determinant (ignore if you haven’t taken linear algebra,
either way, you can just use the formula given in the homework):
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1.3 PART III

See Fig 1.2.

r£v = 0x̂ +0ŷ °2ẑ (1.3)

1.4 PART IV

See Fig. 1.3

r£v = 0x̂ +0ŷ +2ẑ (1.4)

1.5 PART V

See Fig. 1.4

r£v = 0x̂ +0ŷ +0ẑ (1.5)

1.6 PART VI

See Fig. 1.5

r£v = 0x̂ +0ŷ +0ẑ (1.6)

2 PROBLEM II (GRADED)

In the limit that L >> R we can approximate L º1, so we can find the electric field by apply-
ing Gauss’ law:

Z
E d a = Q

≤0

2ºr LE = Q

≤0

E = Q

2º≤0r L

(2.1)
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Where r is the radius of the Gaussian surface and is R2 < r < R1 (everywhere else the electric
field is zero) and Q is the charge enclosed, which then simply corresponds to the charge of
the cylinder with radius R2. Then:
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Z

R1

R2

dr E(r )

=° Q

2º≤0L

Z
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=° Q

2º≤0L

log (R1/R2) (2.2)

Then the capacitance is simply:

C =Q/V

=° 2º≤0L

log (R1/R2)
(2.3)

3 PROBLEM III

3.1 PART I

By Gauss’ law:

Z
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≤0
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2≤0
(3.1)

So:
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(3.2)

For R2 < r < R1. The electric field is zero everywhere else, and so is the potential. Then:
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C = Q

V

= 4º
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(3.3)

3.2 PART II

We know that the energy stored in a capacitor is simply U = CV

2/2, express Q = 4ºr

2≤0E =
4º≤0R

2
2E .
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(3.4)

You can plug in the given values to find the final result.
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Figure 1.1: Vector field v = y x̂ ° x ŷ . The actual vector field v = y

x

2+y

2+z

2 x̂ ° x

x

2+y

2+z

2 ŷ looks
exactly the same, except that it is normalized twice, so every vector has exactly
the same length as the others, which is less than unit length (this is not terribly
enlightning when plot, that is the reason for plotting v = y x̂ ° x ŷ instead. Other
than vector length, the two fields look exactly the same).
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Figure 1.2: Vector field v = y x̂ °x ŷ .
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Figure 1.3: Vector field v =°y x̂ +x ŷ .
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Figure 1.4: Vector field v = y x̂ +x ŷ .
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Figure 1.5: Vector field v = xx̂ + y ŷ + zẑ.
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