PHY 272: FIELDS PROBLEM SET 6 due February 11, before class

A. Just to make sure we are in the same page ...

Let $\mathbf{r}_1 = 3\hat{\mathbf{x}} - 2\hat{\mathbf{z}}$ and $\mathbf{r}_2 = \hat{\mathbf{y}} + 4\hat{\mathbf{z}}$. Find

$$\mathbf{R} = \frac{\mathbf{r}_1 - \mathbf{r}_2}{|\mathbf{r}_1 - \mathbf{r}_2|^3}.\tag{1}$$

If you give me a scalar as the answer a kitten will be killed.

B. Connected conducting balls

A conducting wire is attached to an initially charged spherical conducting shell of radius 2a. The other end of the wire is attached to the outer surface of a neutral conducting spherical shell of radius a that is located a very large distance away (at infinity). When electrostatic equilibrium is reached, what is the charge on the shell of radius 2a? Explain your reasoning.

C. Parallel charged planes

Two infinite planes have surface charge densities σ and $-\sigma$. Find the electric field and the electric potential in all regions of space.

D. Cylindrical capacitor

An infinite cylinder of radius R is charged with surface charge density σ . Along its axis there is a linear charge distribution with linear charge density $\lambda = -2\pi R\sigma$ Find the electric field and electric potential in all regions of space.