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1 PROBLEM A

1.1 PART I

Since the flux is a scalar quantity, you can simply compute the flux passing through each side
of the cube and add up all the contributions to obtain the total flux. The surface integral is
really easy to find, so there’s no need to parametrize:

f lux1 =
R1

0

R1
0 d xd y(ẑ) · (zx̂ °3ŷ) = 0

f lux2 =
R1

0

R1
0 d xd y(ẑ) · (zx̂ °3ŷ) = 0

f lux3 =
R1

0

R1
0 d yd z(x̂) · (zx̂ °3ŷ) = 1/2

f lux4 =
R1

0

R1
0 d yd z(°x̂) · (zx̂ °3ŷ) =°1/2

f lux5 =
R1

0

R1
0 d xd z(ŷ) · (zx̂ °3ŷ) =°3

f lux6 =
R1

0

R1
0 d xd z(°ŷ) · (zx̂ °3ŷ) = 3

Now, add up all the contributions:

P
i

f lux

i

= 0

Where i goes from 1 to 6.

1.2 PART II

The vector orthonormal to the sphere is just r̂ , so, when you take the dot product with the
vector field r̂ the result is just one. Then the flux is simply this dot product (since its constant)
times the surface integral for a sphere, which is just 4ºR

2. Formally:
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f lux =
R

sur f

n̂ ·v =
R2º

0

Rº
0 d¡dµR

2
si n(¡) ·1 = 4ºR

2

Notice that this is not a constant vector field, which is why the flux depends on the radius of
the sphere.

1.3 PART III

r ·v = @
@x

z + @
@y

(°3)+ @
@z

0 = 0

1.4 PART IV

See Fig 1.1

r ·v = @
@x

x + @
@y

y + @
@z

z = 3

1.5 PART V

See Fig 1.2

r ·v = @
@x

(°x)+ @
@y

(°y)+ @
@z

(°z) =°3

1.6 PART VI

See Fig 1.3

r ·v = @
@x

(x)+ @
@y

(°y)+ @
@z

(0) = 0

1.7 PART VII

See Fig 1.4

r ·v = @
@x

y + @
@y

(°x)+ @
@z

0 = 0

1.8 PART VIII

See Fig 1.5

r ·v = @
@x

x

2 + @
@y

(°y

2)+ @
@z

0 = 2x °2y
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2 PROBLEM B

2.1 PART I

r ·v = @
@x

x + @
@y

y + @
@z

0 = 2

By Gauss Theorem:

f lux =
R

d

3rr ·v
= 2

R1
0

R1
0

R1
0 d xd yd z

= 2

Now, find the flux using the dumb method: compute the flux passing through each side of
the square and sum all the contributions. The surfaces here are simple enough that you need
not parametrize.

f lux1 =
R1

0

R1
0 d xd y(ẑ) · (xx̂ + y ŷ) = 0

f lux2 =
R1

0

R1
0 d xd y(ẑ) · (xx̂ + y ŷ) = 0

f lux3 =
R1

0

R1
0 d yd z(x̂) · (0x̂ + y ŷ) = 0

f lux4 =
R1

0

R1
0 d yd z(x̂) · (1x̂ + y ŷ) = 1

f lux5 =
R1

0

R1
0 d xd z(ŷ) · (xx̂ +0ŷ) = 0

f lux6 =
R1

0

R1
0 d xd z(ŷ) · (xx̂ +1ŷ) = 1

So, the total flux:

P
i

f lux

i

= 2

Where i goes from 1 to 6. Surprise, surprise! Math works.

3 PROBLEM C (GRADED)

3.1 PART I

The electric field generated by a point charge will be symmetric in space at every point. So, it
makes sense to choose a gaussian surface that is also symmetric in space at every point, i.e. a
sphere:

R
d a ·E = Q

≤0

E ·4ºr

2 = Q

≤0

E = Q

4º≤0r

2

Where Q is the total charge.
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3.2 PART II

The only contribution to the electric field will come from the radial component. Now, con-
sider a cylindrical gaussian surface. Notice that the electric field will have the same magni-
tude at every point in the surface of the cylinder! So, this is a good choice. Now, consider
the charged line has a homogenous charge distrubution, which means that the total charge
Q will be Q =∏L where ∏ is the charge per length, and L is just the length of the line:

R
d a ·E = Q

≤0

E ·2ºr L = ∏L

≤0

E = ∏
2ºr ≤0

And, just as we expect, the electric field will only depend on the radial distance to the line.
For a more intuitive approach, you can consider the radial distance to be the "z-component"
of the electric field, then the component perpendicular to the z-axis will just cancel out ev-
erywhere because the line is infinite. The third spatial component is alligned such that it is
always zero.

3.3 PART III

For the symmetry corresponding to this problem, it is better to choose your gaussian surface
to be a cylinder with its radial component alligned parallel to the sheet of charge. Notice that
this is a good choice, because, once the only component that will contribute to the electric
field is that perpendicular to the sheet (becuase the parallel components will simply cancel
out, since the sheet is taken to be infinite). The total charge will simply be the charge per unit
area times the area: Q =æA, where Q is the total charge, æ is the charge per area, and A is the
area.

E A = æA

≤0

E = æ
≤0

But notice that this is the electric field enclosed by the gaussian surface, i.e. the sum of the
field both, above and below the sheet of charge. So, the field at any point away from the sheet
of charge would just be half of this:

E = æ
2≤0

3.4 PART IV

Notice that outside the sphere (r > R, where R is the radius of the sphere), the electric field
will look exactly the same as a point charge, since it is symmetrical everywhere in space. So:

E = Q

4º≤0r

2

Inside the sphere the situation becomes a bit more interesting. Notice that the total charge
enclosed by the gaussian surface will simply be Q[ r

3

R

3 ], think about it for 2 seconds and con-

vice yourself its true (think of the ratios of volumes, V

enc

V

spher e

= 4ºr

3/3
4ºR

3/3 ). So:
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E ·4ºr

2 = Qr

3

≤0R

3

E = rQ

4º≤0R

3

3.5 PART V

Notice that the charge distribution Ω is (i) continuous, i.e. it has a value at every point in
space, and (ii) decays to zero as r !1. So, a spherical gaussian surface should do the trick.
Remember that Ω is simply a charge distribution (that is, dQ/dV , where dV is simply the unit
volume), so, to obtain the total charge enclosed, simply integrate over all the enclosed space:

E ·4ºr

2 = 1
≤0

R
dV Ω0e

°r /a

where dV = r

2
si n(¡)dµd¡dr

E ·4ºr

2 = 1
≤0

R
r

0

Rº
0

R2º
0 dµd¡dr

0
r

02
si n(¡)Ω0e

°r

0/a

Where r

0 is just a integration dummy variable. You can leave it as r , it really doesn’t matter so
long as you indicate that you are integrating up to an arbitrary point r in space enclosing the
gaussian surface. If you have solved up to this point you will obtain full credit.

To solve the integral, there are a few methods you could use. You may integrate by parts, or
you can differentiate inside the integral, as I am about to explain. Bear with me for a moment
and suppose that you can take a to be a variable. Even better, make a new variable b =°1/a.
So

R
dr r

2
e

r b =
R

dr

d

2

db

2 e

r b

Now, because you are integrating with respect to r , you can simply "pull out" the differential
operator:

R
dr r

2
e

r b =
R

dr

d

2

db

2 e

r b = d

2

db

2

R
dr e

r b

And now you are left with an integral that is much, much easier to solve! After you have solved
the integral, you can simply differentiate with respect to b twice and obtain the final result.
Or you can simply use Wolfram Alpha or Mathematica (which I personally prefer, just make
sure you actually know how to do the integrals)...Either way, you should obtain the following
result:

E ·4ºr

2 = 2º
≤0

[4a

3 °2ae

°r /a(2a +2ar + r

2)]

E = 1
2≤0r

2 [4a

3 °2ae

°r /a(2a

2 +2ar + r

2)]
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Figure 1.1: Vector field corresponding to Part IV
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Figure 1.2: Vector field corresponding to Part V
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Figure 1.3: Vector field corresponding to Part VI
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Figure 1.4: Vector field corresponding to Part VII
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Figure 1.5: Vector field corresponding to Part VIII
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