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1 PROBLEM A

1.1 PART I

For partial differentiation you can simply think of the function you’re differentiating as con-
sisting of constants and a single variable for each variable you’re differentiating. This way,
when you’re differentiating with respect to x, you hold y and z constant. Similarly, whilst
differentiating with respect to y you can think of x and z as constants and so on.
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1.2 PART II

If the direction of greatest increase is given by r f , then the direction of least change will be
given by a vector perpendicular to r f . Particularly, any vector perpendicular to r f will give
the direction of minimal change. Therefore, the direction of least change will be given by a
plane perpendicular to r f . We can find this by using the definition of dot product, that is, if
the dot product of two vectors is zero, then the vectors are orthogonal. So:
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Where the vector (x ° x0)x̂ + (y ° y0)ŷ + (z ° z0)ẑ denotes a vector that must pass through the
point (x0, y0, z0) = (1,4,3), and the dot product is equal to zero to ensure orthogonality. So,
the plane:
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Gives the direction of least increase, just as any vector lying along the plane.

2 PROBLEM B

2.1 PART III

The function:

r (t ) = R[cos(t )x̂ + si n(t )ŷ]

describes a circle of radius R for all 0 < t < 2º.

2.2 PART IV
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2.3 PART V
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Notice I used x = Rcos(t ), then we can apply the chain rule by replacing u = si n(t ) and du =
cos(t )d t , so:
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3 PROBLEM C

3.1 PART VI
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3.2 PART VII
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As expected.

2



4 PROBLEM D

4.1 PART I

This is just a constant field.

4.2 PART II

See Fig 4.1.

4.3 PART III

See Fig 4.2.

4.4 PART IV

See Fig. 4.3

5 PROBLEM E

By Coulomb’s law, the electric field any point located at a distance r from a charge q is given
as:
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The field produced by two charges is just the sum of the field produced by each individual
charge. So:
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Where r1 = r°0x̂ = r(x, y) and r1 = r° x̂ = r(x °1, y)
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Here, r̂

i

denotes the unit vector, which is simply the vector itself divided by its magnitude.
The two dimensional sketch of the field lines is just the usual dipole electric field. Recall
electric field lines always point from positive to negative.
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Figure 4.1: Vector field corresponding to Part II
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Figure 4.2: Vector field corresponding to Part III

5



0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 4.3: Vector field corresponding to Part IV
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