$M_{ m e}$	Mass of the earth	$5.98 imes10^{24}\mathrm{kg}$
R _e	Radius of the earth	$6.37 \times 10^{6} \mathrm{m}$
g	Free-fall acceleration on earth	9.80 m/s^2
G	Gravitational constant	$6.67 imes 10^{-11}{ m N}{ m m}^2/{ m kg}^2$
$k_{ m B}$	Boltzmann's constant	$1.38 imes10^{-23}\mathrm{J/K}$
R	Gas constant	8.31 J/mol K
$N_{ m A}$	Avogadro's number	6.02×10^{23} particles/mol
T_0	Absolute zero	-273°C
σ	Stefan-Boltzmann constant	$5.67 imes 10^{-8} \mathrm{W/m^2 K^4}$
$p_{ m atm}$	Standard atmosphere	101,300 Pa
$v_{\rm sound}$	Speed of sound in air at 20°C	343 m/s
$m_{ m p}$	Mass of the proton (and the neutron)	$1.67 imes10^{-27}\mathrm{kg}$
$m_{\rm e}$	Mass of the electron	$9.11 imes 10^{-31} \mathrm{kg}$
K	Coulomb's law constant $(1/4\pi\epsilon_0)$	$8.99 \times 10^9 \mathrm{N}\mathrm{m}^2/\mathrm{C}^2$
ϵ_0	Permittivity constant	$8.85 imes 10^{-12} \mathrm{C}^2 / \mathrm{N} \mathrm{m}^2$
μ_0	Permeability constant	$1.26 \times 10^{-6} \mathrm{Tm/A}$
е	Fundamental unit of charge	$1.60 imes 10^{-19} \mathrm{C}$
C	Speed of light in vacuum	$3.00 \times 10^8 { m m/s}$
h	Planck's constant	$6.63 \times 10^{-34} \mathrm{Js}$ $4.14 \times 10^{-15} \mathrm{eVs}$
ħ	Planck's constant	$1.05 \times 10^{-34} \mathrm{Js}$ $6.58 \times 10^{-16} \mathrm{eVs}$
$a_{ m B}$	Bohr radius	$5.29 imes 10^{-11} \mathrm{m}$

ommon	Prefixes	Conversion Factors	
Prefix	Meaning	Length	Time
femto-	10^{-15}	1 in = 2.54 cm	1 day = 86,400 s
nico-	10^{-12}	1 mi = 1.609 km	$1 \text{ year} = 3.16 \times 10^7 \text{ s}$
nano-	10^{-9}	1 m = 39.37 in	Pressure
micro-	10^{-6}	1 km = 0.621 mi	1 atm = 101.3 kPa = 760 mm of Hg
milli-	10^{-3}	Velocity	$1 \text{ atm} = 14.7 \text{ lb/in}^2$
centi-	10^{-2}	1 mph = 0.447 m/s	Rotation
kilo-	10^{3}	1 m/s = 2.24 mph = 3.28 ft/s	$1 \text{ rad} = 180^{\circ}/\pi = 57.3^{\circ}$
mega-	10^{6}	Mass and energy	$1 \text{ rev} = 360^{\circ} = 2\pi \text{ rad}$
giga-	10 ⁹	$1 \mathrm{u} = 1.661 \times 10^{-27} \mathrm{kg}$	1 rev/s = 60 rpm
terra-	1012	1 cal = 4.19 J	
		$1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$	

Cos(60°) = 1/2	$\cos(30^{\circ}) = \sqrt{3}/2$	$\cos(45^{\circ}) = \sqrt{2}/2$
Sin(60°) = $\sqrt{3}/2$	Sin(30°) =1/2	$Sin(45^{\circ}) = \sqrt{2}/2$
Tan(60°)= $\sqrt{3}$	Tan(30°)=1/3	Tan(45°)=1

NAME:	Quiz #9a: Phys270

1. [10 pts] A 20.0-cm-diameter blackbody radiating sphere is glowing red, but a spectrum shows that its emission spectrum peaks at an infrared wavelength of 1.0 mm. How much power does the sphere radiate?

$M_{ m e}$	Mass of the earth	$5.98 imes10^{24}\mathrm{kg}$
R _e	Radius of the earth	$6.37 \times 10^{6} \mathrm{m}$
g	Free-fall acceleration on earth	9.80 m/s^2
G	Gravitational constant	$6.67 imes 10^{-11}{ m N}{ m m}^2/{ m kg}^2$
$k_{ m B}$	Boltzmann's constant	$1.38 imes10^{-23}\mathrm{J/K}$
R	Gas constant	8.31 J/mol K
$N_{ m A}$	Avogadro's number	6.02×10^{23} particles/mol
T_0	Absolute zero	-273°C
σ	Stefan-Boltzmann constant	$5.67 imes 10^{-8} \mathrm{W/m^2 K^4}$
$p_{ m atm}$	Standard atmosphere	101,300 Pa
$v_{\rm sound}$	Speed of sound in air at 20°C	343 m/s
$m_{ m p}$	Mass of the proton (and the neutron)	$1.67 imes10^{-27}\mathrm{kg}$
$m_{\rm e}$	Mass of the electron	$9.11 imes 10^{-31} \mathrm{kg}$
K	Coulomb's law constant $(1/4\pi\epsilon_0)$	$8.99 \times 10^9 \mathrm{N}\mathrm{m}^2/\mathrm{C}^2$
ϵ_0	Permittivity constant	$8.85 imes 10^{-12} \mathrm{C}^2 / \mathrm{N} \mathrm{m}^2$
μ_0	Permeability constant	$1.26 \times 10^{-6} \mathrm{Tm/A}$
е	Fundamental unit of charge	$1.60 imes 10^{-19} \mathrm{C}$
С	Speed of light in vacuum	$3.00 \times 10^8 { m m/s}$
h	Planck's constant	$6.63 \times 10^{-34} \mathrm{Js}$ $4.14 \times 10^{-15} \mathrm{eVs}$
ħ	Planck's constant	$1.05 \times 10^{-34} \mathrm{Js}$ $6.58 \times 10^{-16} \mathrm{eVs}$
$a_{ m B}$	Bohr radius	$5.29 imes 10^{-11} \mathrm{m}$

ommon	Prefixes	Conversion Factors	
Prefix	Meaning	Length	Time
femto-	10^{-15}	1 in = 2.54 cm	1 day = 86,400 s
nico-	10^{-12}	1 mi = 1.609 km	$1 \text{ year} = 3.16 \times 10^7 \text{ s}$
nano-	10^{-9}	1 m = 39.37 in	Pressure
micro-	10^{-6}	1 km = 0.621 mi	1 atm = 101.3 kPa = 760 mm of Hg
milli-	10^{-3}	Velocity	$1 \text{ atm} = 14.7 \text{ lb/in}^2$
centi-	10^{-2}	1 mph = 0.447 m/s	Rotation
kilo-	10^{3}	1 m/s = 2.24 mph = 3.28 ft/s	$1 \text{ rad} = 180^{\circ}/\pi = 57.3^{\circ}$
mega-	10^{6}	Mass and energy	$1 \text{ rev} = 360^{\circ} = 2\pi \text{ rad}$
giga-	10 ⁹	$1 \mathrm{u} = 1.661 \times 10^{-27} \mathrm{kg}$	1 rev/s = 60 rpm
terra-	1012	1 cal = 4.19 J	
		$1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$	

Cos(60°) = 1/2	$\cos(30^{\circ}) = \sqrt{3}/2$	$\cos(45^{\circ}) = \sqrt{2}/2$
Sin(60°) = $\sqrt{3}/2$	Sin(30°) =1/2	$Sin(45^{\circ}) = \sqrt{2}/2$
Tan(60°)= $\sqrt{3}$	Tan(30°)=1/3	Tan(45°)=1

NAME:	Quiz #9b: Phys270

1. [10 pts] To initiate a nuclear reaction, an experimental nuclear physicist wants to shoot a proton into a ¹²C nucleus. The proton must impact the nucleus with a kinetic energy of 3.00 MeV. The nuclear radius is 3.00 fm. You can assume the nucleus remains at rest and the proton's velocity is non-relativistic. [Note: $1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}$]

a. [5 pts] With what speed must the proton be fired toward the target?

b. [5 pts] Through what potential difference must the proton be accelerated from rest to acquire this speed?

$M_{ m e}$	Mass of the earth	$5.98 imes10^{24}\mathrm{kg}$
R _e	Radius of the earth	$6.37 \times 10^{6} \mathrm{m}$
g	Free-fall acceleration on earth	9.80 m/s^2
G	Gravitational constant	$6.67 imes 10^{-11}{ m N}{ m m}^2/{ m kg}^2$
$k_{ m B}$	Boltzmann's constant	$1.38 imes10^{-23}\mathrm{J/K}$
R	Gas constant	8.31 J/mol K
$N_{ m A}$	Avogadro's number	6.02×10^{23} particles/mol
T_0	Absolute zero	-273°C
σ	Stefan-Boltzmann constant	$5.67 imes 10^{-8} \mathrm{W/m^2 K^4}$
$p_{ m atm}$	Standard atmosphere	101,300 Pa
$v_{\rm sound}$	Speed of sound in air at 20°C	343 m/s
$m_{ m p}$	Mass of the proton (and the neutron)	$1.67 imes10^{-27}\mathrm{kg}$
$m_{\rm e}$	Mass of the electron	$9.11 imes 10^{-31} \mathrm{kg}$
K	Coulomb's law constant $(1/4\pi\epsilon_0)$	$8.99 \times 10^9 \mathrm{N}\mathrm{m}^2/\mathrm{C}^2$
ϵ_0	Permittivity constant	$8.85 imes 10^{-12} \mathrm{C}^2 / \mathrm{N} \mathrm{m}^2$
μ_0	Permeability constant	$1.26 \times 10^{-6} \mathrm{Tm/A}$
е	Fundamental unit of charge	$1.60 imes 10^{-19} \mathrm{C}$
C	Speed of light in vacuum	$3.00 \times 10^8 { m m/s}$
h	Planck's constant	$6.63 \times 10^{-34} \mathrm{Js}$ $4.14 \times 10^{-15} \mathrm{eVs}$
ħ	Planck's constant	$1.05 \times 10^{-34} \mathrm{Js}$ $6.58 \times 10^{-16} \mathrm{eVs}$
$a_{ m B}$	Bohr radius	$5.29 imes 10^{-11} \mathrm{m}$

ommon	Prefixes	Conversion Factors	
Prefix	Meaning	Length	Time
femto-	10^{-15}	1 in = 2.54 cm	1 day = 86,400 s
nico-	10^{-12}	1 mi = 1.609 km	$1 \text{ year} = 3.16 \times 10^7 \text{ s}$
nano-	10^{-9}	1 m = 39.37 in	Pressure
micro-	10^{-6}	1 km = 0.621 mi	1 atm = 101.3 kPa = 760 mm of Hg
milli-	10^{-3}	Velocity	$1 \text{ atm} = 14.7 \text{ lb/in}^2$
centi-	10^{-2}	1 mph = 0.447 m/s	Rotation
kilo-	10^{3}	1 m/s = 2.24 mph = 3.28 ft/s	$1 \text{ rad} = 180^{\circ}/\pi = 57.3^{\circ}$
mega-	10^{6}	Mass and energy	$1 \text{ rev} = 360^{\circ} = 2\pi \text{ rad}$
giga-	10 ⁹	$1 \mathrm{u} = 1.661 \times 10^{-27} \mathrm{kg}$	1 rev/s = 60 rpm
terra-	1012	1 cal = 4.19 J	
		$1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$	

Cos(60°) = 1/2	$\cos(30^{\circ}) = \sqrt{3}/2$	$\cos(45^{\circ}) = \sqrt{2}/2$
Sin(60°) = $\sqrt{3}/2$	Sin(30°) =1/2	$Sin(45^{\circ}) = \sqrt{2}/2$
Tan(60°)= $\sqrt{3}$	Tan(30°)=1/3	Tan(45°)=1

NAME:	Quiz #9c: Phys270
	-

1. [10 pts] A neutral lithium atom has three electrons. Two of these electrons form an "inner core" but the third – the valence electron – orbits at a much larger radius. From the valence electron's perspective, it is orbiting a spherical ball of charge having a net charge of +e (that is, the three protons in the nucleus and the two inner-core electrons). The energy required to ionize a lithium atom in the ground state is 5.0 eV. According to Rutherford's nuclear model of the atom, what are the orbital radius and speed of the valence electron?

[Note: $1 \text{ eV} = 1.6 \text{ x } 10^{-19} \text{ J}$]

$M_{ m e}$	Mass of the earth	$5.98 imes 10^{24}\mathrm{kg}$	
R _e	Radius of the earth	$6.37 \times 10^{6} \mathrm{m}$	
g	Free-fall acceleration on earth	9.80 m/s^2	
G	Gravitational constant	$6.67 imes 10^{-11}{ m N}{ m m}^2/{ m kg}^2$	
$k_{ m B}$	Boltzmann's constant	$1.38 imes 10^{-23} \mathrm{J/K}$	
R	Gas constant	8.31 J/mol K	
$N_{ m A}$	Avogadro's number	6.02×10^{23} particles/mol	
T_0	Absolute zero	-273°C	
σ	Stefan-Boltzmann constant	$5.67 imes 10^{-8} \mathrm{W/m^2 K^4}$	
$p_{ m atm}$	Standard atmosphere	101,300 Pa	
$v_{\rm sound}$	Speed of sound in air at 20°C	343 m/s	
$m_{ m p}$	Mass of the proton (and the neutron)	$1.67 imes10^{-27}\mathrm{kg}$	
$m_{\rm e}$	Mass of the electron	$9.11 imes 10^{-31} \mathrm{kg}$	
K	Coulomb's law constant $(1/4\pi\epsilon_0)$	$8.99 \times 10^9 \mathrm{N}\mathrm{m}^2/\mathrm{C}^2$	
ϵ_0	Permittivity constant	$8.85 imes 10^{-12} \mathrm{C}^2 / \mathrm{N} \mathrm{m}^2$	
μ_0	Permeability constant	$1.26 \times 10^{-6} \mathrm{Tm/A}$	
е	Fundamental unit of charge	$1.60 imes 10^{-19} \mathrm{C}$	
C	Speed of light in vacuum	$3.00 \times 10^8 { m m/s}$	
h	Planck's constant	$6.63 \times 10^{-34} \mathrm{Js}$ $4.14 \times 10^{-15} \mathrm{eVs}$	
ħ	Planck's constant	$1.05 \times 10^{-34} \mathrm{Js}$ $6.58 \times 10^{-16} \mathrm{eVs}$	
$a_{ m B}$	Bohr radius	$5.29 imes 10^{-11} \mathrm{m}$	

Common Prefixes		Conversion Factors	Conversion Factors		
Prefix	Meaning	Length	Time		
femto-	10^{-15}	1 in = 2.54 cm	1 day = 86,400 s		
nico-	10^{-12}	1 mi = 1.609 km	$1 \text{ year} = 3.16 \times 10^7 \text{ s}$		
nano-	10^{-9}	1 m = 39.37 in	Pressure		
micro-	10^{-6}	1 km = 0.621 mi	1 atm = 101.3 kPa = 760 mm of Hg		
milli-	10^{-3}	Velocity	$1 \text{ atm} = 14.7 \text{ lb/in}^2$		
centi-	10^{-2}	1 mph = 0.447 m/s	Rotation		
kilo-	10^{3}	1 m/s = 2.24 mph = 3.28 ft/s	$1 \text{ rad} = 180^{\circ}/\pi = 57.3^{\circ}$		
mega-	10^{6}	Mass and energy	$1 \text{ rev} = 360^{\circ} = 2\pi \text{ rad}$		
giga-	10 ⁹	$1 \mathrm{u} = 1.661 \times 10^{-27} \mathrm{kg}$	1 rev/s = 60 rpm		
terra-	1012	1 cal = 4.19 J			
		$1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$			

Cos(60°) = 1/2	$\cos(30^{\circ}) = \sqrt{3}/2$	$\cos(45^{\circ}) = \sqrt{2}/2$
Sin(60°) = $\sqrt{3}/2$	Sin(30°) =1/2	$Sin(45^{\circ}) = \sqrt{2}/2$
Tan(60°)= $\sqrt{3}$	Tan(30°)=1/3	Tan(45°)=1

NAME:	Quiz #9d: Phys270

1. [10 pts] An unknown charged particle passes without deflection throug h crossed electric and magnetic fields of strengths 200,000 V/m and 0.10 T, respectively. The velocity of the particle is perpendicular to both fields. The particle then passes out of this region and into a region of uniform magnetic field of 0.2 T in which the particle makes a semicircle of diameter 20 cm. What is the particle's charge-to-mass ratio?