	Quiz #10a: Phys270	
--	-----------------------	--

1. [10 pts] Consider a particle in a rigid box of length L in the n=3 state. The rigid box has walls whose potential energy is infinitely high at x<=0 and x>=L, and a potential energy that is zero in between.

a. [7 pts] Sketch a graph of $|\psi(x)|^2$. Label the points x=0 and x=L.

b. [3 pts] Where, in terms of L, are the positions at which the particle is most likely to be found?

Useful Data

$M_{ m e}$	Mass of the earth	$5.98 imes10^{24}\mathrm{kg}$	
$R_{\rm e}$	Radius of the earth	$6.37 \times 10^{6} \mathrm{m}$	
g	Free-fall acceleration on earth 9.80 m/s^2		
G	Gravitational constant	$6.67 imes 10^{-11}{ m N}{ m m}^2/{ m kg}^2$	
$k_{ m B}$	Boltzmann's constant	$1.38 imes 10^{-23} \mathrm{J/K}$	
R	Gas constant	8.31 J/mol K	
$N_{\rm A}$	Avogadro's number	6.02×10^{23} particles/mol	
T_0	Absolute zero	-273°C	
σ	Stefan-Boltzmann constant	$5.67 imes 10^{-8}{ m W/m^2K^4}$	
$p_{ m atm}$	Standard atmosphere	101,300 Pa	
$v_{\rm sound}$	Speed of sound in air at 20°C	343 m/s	
$m_{ m p}$	Mass of the proton (and the neutron)	$1.67 imes10^{-27}\mathrm{kg}$	
$m_{\rm e}$	Mass of the electron	$9.11 imes 10^{-31} \mathrm{kg}$	
K	Coulomb's law constant $(1/4\pi\epsilon_0)$	$8.99 \times 10^9 \mathrm{N}\mathrm{m}^2/\mathrm{C}^2$	
ϵ_0	Permittivity constant	$8.85 imes 10^{-12} \mathrm{C}^2 / \mathrm{N} \mathrm{m}^2$	
μ_0	Permeability constant	$1.26 imes 10^{-6} { m Tm/A}$	
e	Fundamental unit of charge	$1.60 imes 10^{-19} \mathrm{C}$	
C	Speed of light in vacuum	$3.00 \times 10^8 { m m/s}$	
h	Planck's constant	$6.63 \times 10^{-34} \mathrm{Js}$ $4.14 \times 10^{-15} \mathrm{eVs}$	
ħ	Planck's constant	$1.05 \times 10^{-34} \mathrm{J s}$ $6.58 \times 10^{-16} \mathrm{eV s}$	
a_{B}	Bohr radius	$5.29 \times 10^{-11} \mathrm{m}$	

Common Prefixes Conversion Factors

Common Prefixes		Conversion Factors	
Prefix	Meaning	Length	Time
femto-	10^{-15}	1 in = 2.54 cm	1 day = 86,400 s
pico-	10^{-12}	1 mi = 1.609 km	$1 \text{ year} = 3.16 \times 10^7 \text{ s}$
nano-	10^{-9}	1 m = 39.37 in	Pressure
micro-	10^{-6}	1 km = 0.621 mi	1 atm = 101.3 kPa = 760 mm of Hg
milli-	10^{-3}	Velocity	$1 \text{ atm} = 14.7 \text{ lb/in}^2$
centi-	10^{-2}	1 mph = 0.447 m/s	Rotation
kilo-	10 ³	1 m/s = 2.24 mph = 3.28 ft/s	$1 \text{ rad} = 180^{\circ}/\pi = 57.3^{\circ}$
mega-	10^{6}	Mass and energy	$1 \text{ rev} = 360^\circ = 2\pi \text{ rad}$
giga-	10 ⁹	$1 \mathrm{u} = 1.661 \times 10^{-27} \mathrm{kg}$	1 rev/s = 60 rpm
terra-	10^{12}	$1 \operatorname{cal} = 4.19 \operatorname{J}$	The second se
		$1 \mathrm{eV} = 1.60 \times 10^{-19} \mathrm{J}$	

Cos(60°) = 1/2	$\cos(30^{\circ}) = \sqrt{3}/2$	$\cos(45^{\circ}) = \sqrt{2}/2$
$Sin(60^{\circ}) = \sqrt{3}/2$	Sin(30°) =1/2	$Sin(45^{\circ}) = \sqrt{2}/2$
$Tan(60^{\circ})=\sqrt{3}$	Tan(30°)=1/3	Tan(45°)=1

NAME:	Quiz #10b: Phys270

1. [10 pts] Suppose that $\psi_1(x)$ and $\psi_2(x)$ are both solutions to the timeindependent Schrodinger equation for the same potential energy U(x). Prove that the superposition $\psi(x) = A \psi_1(x) + B \psi_2(x)$ is also a solution to the timeindependent Schrodinger equation.

Useful Data

$M_{ m e}$	Mass of the earth	$5.98 imes10^{24}\mathrm{kg}$	
$R_{\rm e}$	Radius of the earth	$6.37 \times 10^{6} \mathrm{m}$	
g	Free-fall acceleration on earth 9.80 m/s^2		
G	Gravitational constant	$6.67 imes 10^{-11}{ m N}{ m m}^2/{ m kg}^2$	
$k_{ m B}$	Boltzmann's constant	$1.38 imes 10^{-23} \mathrm{J/K}$	
R	Gas constant	8.31 J/mol K	
$N_{\rm A}$	Avogadro's number	6.02×10^{23} particles/mol	
T_0	Absolute zero	-273°C	
σ	Stefan-Boltzmann constant	$5.67 imes 10^{-8}{ m W/m^2K^4}$	
$p_{ m atm}$	Standard atmosphere	101,300 Pa	
$v_{\rm sound}$	Speed of sound in air at 20°C	343 m/s	
$m_{ m p}$	Mass of the proton (and the neutron)	$1.67 imes10^{-27}\mathrm{kg}$	
$m_{\rm e}$	Mass of the electron	$9.11 imes 10^{-31} \mathrm{kg}$	
K	Coulomb's law constant $(1/4\pi\epsilon_0)$	$8.99 \times 10^9 \mathrm{N}\mathrm{m}^2/\mathrm{C}^2$	
ϵ_0	Permittivity constant	$8.85 imes 10^{-12} \mathrm{C}^2 / \mathrm{N} \mathrm{m}^2$	
μ_0	Permeability constant	$1.26 imes 10^{-6} { m Tm/A}$	
e	Fundamental unit of charge	$1.60 imes 10^{-19} \mathrm{C}$	
C	Speed of light in vacuum	$3.00 \times 10^8 { m m/s}$	
h	Planck's constant	$6.63 \times 10^{-34} \mathrm{Js}$ $4.14 \times 10^{-15} \mathrm{eVs}$	
ħ	Planck's constant	$1.05 \times 10^{-34} \mathrm{J s}$ $6.58 \times 10^{-16} \mathrm{eV s}$	
a_{B}	Bohr radius	$5.29 \times 10^{-11} \mathrm{m}$	

Common Prefixes Conversion Factors

Common Prefixes		Conversion Factors	
Prefix	Meaning	Length	Time
femto-	10^{-15}	1 in = 2.54 cm	1 day = 86,400 s
pico-	10^{-12}	1 mi = 1.609 km	$1 \text{ year} = 3.16 \times 10^7 \text{ s}$
nano-	10^{-9}	1 m = 39.37 in	Pressure
micro-	10^{-6}	1 km = 0.621 mi	1 atm = 101.3 kPa = 760 mm of Hg
milli-	10^{-3}	Velocity	$1 \text{ atm} = 14.7 \text{ lb/in}^2$
centi-	10^{-2}	1 mph = 0.447 m/s	Rotation
kilo-	10 ³	1 m/s = 2.24 mph = 3.28 ft/s	$1 \text{ rad} = 180^{\circ}/\pi = 57.3^{\circ}$
mega-	10^{6}	Mass and energy	$1 \text{ rev} = 360^\circ = 2\pi \text{ rad}$
giga-	10 ⁹	$1 \mathrm{u} = 1.661 \times 10^{-27} \mathrm{kg}$	1 rev/s = 60 rpm
terra-	10^{12}	$1 \operatorname{cal} = 4.19 \operatorname{J}$	The second se
		$1 \mathrm{eV} = 1.60 \times 10^{-19} \mathrm{J}$	

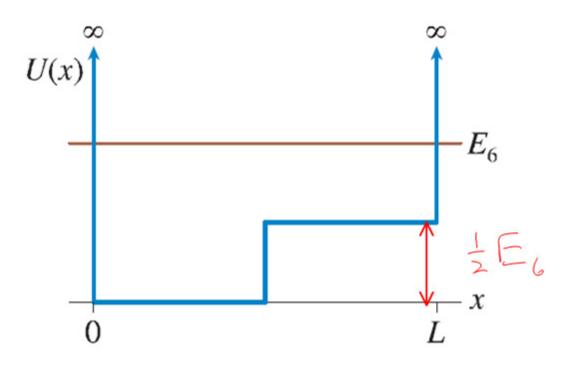
Cos(60°) = 1/2	$\cos(30^{\circ}) = \sqrt{3}/2$	$\cos(45^{\circ}) = \sqrt{2}/2$
$Sin(60^{\circ}) = \sqrt{3}/2$	Sin(30°) =1/2	$Sin(45^{\circ}) = \sqrt{2}/2$
$Tan(60^{\circ})=\sqrt{3}$	Tan(30°)=1/3	Tan(45°)=1

NAME:	Quiz #10c: Phys270

1. [10 pts] An electron in a finite potential well has a 1.0 nm penetration distance into the classically forbidden region. How far below U_0 is the electron's total energy?

Useful Data

$M_{ m e}$	Mass of the earth	$5.98 imes10^{24}\mathrm{kg}$	
$R_{\rm e}$	Radius of the earth	$6.37 \times 10^{6} \mathrm{m}$	
g	Free-fall acceleration on earth 9.80 m/s^2		
G	Gravitational constant	$6.67 imes 10^{-11}{ m N}{ m m}^2/{ m kg}^2$	
$k_{ m B}$	Boltzmann's constant	$1.38 imes 10^{-23} \mathrm{J/K}$	
R	Gas constant	8.31 J/mol K	
$N_{\rm A}$	Avogadro's number	6.02×10^{23} particles/mol	
T_0	Absolute zero	-273°C	
σ	Stefan-Boltzmann constant	$5.67 imes 10^{-8}{ m W/m^2K^4}$	
$p_{ m atm}$	Standard atmosphere	101,300 Pa	
$v_{\rm sound}$	Speed of sound in air at 20°C	343 m/s	
$m_{ m p}$	Mass of the proton (and the neutron)	$1.67 imes10^{-27}\mathrm{kg}$	
$m_{\rm e}$	Mass of the electron	$9.11 imes 10^{-31} \mathrm{kg}$	
K	Coulomb's law constant $(1/4\pi\epsilon_0)$	$8.99 \times 10^9 \mathrm{N}\mathrm{m}^2/\mathrm{C}^2$	
ϵ_0	Permittivity constant	$8.85 imes 10^{-12} \mathrm{C}^2 / \mathrm{N} \mathrm{m}^2$	
μ_0	Permeability constant	$1.26 imes 10^{-6} { m Tm/A}$	
e	Fundamental unit of charge	$1.60 imes 10^{-19} \mathrm{C}$	
C	Speed of light in vacuum	$3.00 \times 10^8 { m m/s}$	
h	Planck's constant	$6.63 \times 10^{-34} \mathrm{Js}$ $4.14 \times 10^{-15} \mathrm{eVs}$	
ħ	Planck's constant	$1.05 \times 10^{-34} \mathrm{Js}$ $6.58 \times 10^{-16} \mathrm{eVs}$	
a_{B}	Bohr radius	$5.29 \times 10^{-11} \mathrm{m}$	


Common Prefixes Conversion Factors

Common Prefixes		Conversion Factors	
Prefix	Meaning	Length	Time
femto-	10^{-15}	1 in = 2.54 cm	1 day = 86,400 s
pico-	10^{-12}	1 mi = 1.609 km	$1 \text{ year} = 3.16 \times 10^7 \text{ s}$
nano-	10^{-9}	1 m = 39.37 in	Pressure
micro-	10^{-6}	1 km = 0.621 mi	1 atm = 101.3 kPa = 760 mm of Hg
milli-	10^{-3}	Velocity	$1 \text{ atm} = 14.7 \text{ lb/in}^2$
centi-	10^{-2}	1 mph = 0.447 m/s	Rotation
kilo-	10 ³	1 m/s = 2.24 mph = 3.28 ft/s	$1 \text{ rad} = 180^{\circ}/\pi = 57.3^{\circ}$
mega-	10^{6}	Mass and energy	$1 \text{ rev} = 360^\circ = 2\pi \text{ rad}$
giga-	10 ⁹	$1 \text{ u} = 1.661 \times 10^{-27} \text{ kg}$	1 rev/s = 60 rpm
terra-	10^{12}	$1 \operatorname{cal} = 4.19 \operatorname{J}$	The second se
		$1 \mathrm{eV} = 1.60 \times 10^{-19} \mathrm{J}$	

Cos(60°) = 1/2	$\cos(30^{\circ}) = \sqrt{3}/2$	$\cos(45^{\circ}) = \sqrt{2}/2$
$Sin(60^{\circ}) = \sqrt{3}/2$	Sin(30°) =1/2	$Sin(45^{\circ}) = \sqrt{2}/2$
$Tan(60^{\circ})=\sqrt{3}$	Tan(30°)=1/3	Tan(45°)=1

NAME:	Quiz #10d: Phys270

1. [10 pts] Sketch the n=6 wave function for the potential energy shown below:

