Chapter 40. Wave Functions and Uncertainty

The wave function
characterizes particles in
terms of the probability of
finding them at various points
in space. This scanning
tunneling microscope image
of graphite shows the most
probable place to find
electrons.

Chapter Goal: To introduce
the wave-function description
of matter and learn how it is
interpreted.



Student Learning Objectives

* To introduce the wave function as the descriptor of particles in quantum mechanics.

* To provide the wave function with a probabilistic interpretation.

* To understand the wave function through pictorial and graphical exercises.

* To introduce the idea of normalization.

* To recognize the limitations on knowledge imposed by the Heisenberg uncertainty principle.



Chapter 40. Wave Functions and
Uncertainty
Topics:

*\Waves, Particles, and the Double-Slit
Experiment

*Connecting the Wave and Photon Views
*The Wave Function
Normalization
*\Wave Packets
*The Heisenberg Uncertainty Principle
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FIGURE 40.1 The double-slit experiment
with light.
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Review double slit
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FIGURE 40.1 The double-slit experiment
with light.
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FIGURE 40.1 The double-slit experiment
with light.
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FIGURE 40.3 A strip of width 8x at
position x.

(a) The number of photons in
this narrow strip when it is
at position x is N{in &x at x).
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Connecting the Wave and Photon Views

The intensity of the light wave is correlated with the
probability of detecting photons. That is, photons are more
likely to be detected at those points where the wave
intensity is high and less likely to be detected at those
points where the wave intensity is low.

The probability of detecting a photon at a particular point

is directly proportional to the square of the light-wave
amplitude function at that point:

Prob(in dx at x) = |A(x)|*8x




Probability Density

We can define the probability density P(x) such that
Prob(in ox at x) = P(x)o0x

In one dimension, probability density has Sl units of m™.
Thus the probability density multiplied by a length yields a
dimensionless probability.

NOTE: P(x) itself is not a probability. You must multiply the
probability density by a length to find an actual probability.
The photon probability density is directly proportional to
the square of the light-wave amplitude:

A(x)|?

P(x) =



EXAMPLE 40.1 Calculating the
probability density

QUESTION:

EXAMPLE 40.1 Calculating the probability density

In an experiment, 6000 out of 600,000 photons are detected mn a
[.0-mm-wide strip located at position x = 50 cm. What 1s the
probability density at x = 50 cm?



EXAMPLE 40.1 Calculating the
probability density

SOLVE The probability that a photon arrives at this particular
strip 1s
6000
600,000

Prob(in 1.0 mm atx = 30 cm) = = (0.010

Thus the probability density P(x) = Prob(in éx at x)/ox at this
position is
Prob(in 1.0 mm atx = 50 ¢m) 0.010

P(50 cm) = -
(30 em) 0.0010 m 0.0010 m

= 10m™!
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FIGURE 40.6 The square of the wave
function is the probability density for
detecting the electron at various values
of the position x.

{a) Wave function

i(x)

(b) Probability density

P(x) = (0]
The particle has the
maximum probability
_-of being detected where
~ % |(x)]? is a maximum.

-
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The particle has zero probability of
being detected where |a,-'fi.1.','||' = ().




Normalization

e A photon or electron has to land somewhere on the
detector after passing through an experimental
apparatus.

e Consequently, the probability that it will be detected at
some position is 100%.

e The statement that the photon or electron has to land
somewhere on the x-axis is expressed mathematically as

“dx = 1

J P(,r')d,r:l [ r(x)

— Y —

e Any wave function must satisfy this normalization
condition.



FIGURE 40.8 The area under the
probability density curve is a probability.

(a) P(x) = |r(x)|
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The area under the curve between
x; and xy is the probability of finding

the particle between x; and x,.

(h) P(x) = |ih(x)]

-The total area under
the curve must be 1.



Wave Packets

FIGURE 40.12 History graph of a wave
packet with duration Ar.

A wave packet can represent either a
matter particle (wave function ) or a

¢ photon (electromagnetic field E).
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Waves to be added span the frequency The waves are all in phase
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Wave Packets

Suppose a single nonrepeating wave packet of duration At
is created by the superposition of many waves that span a
range of frequencies Af.

Fourier analysis shows that for any wave packet

AfAf =~ 1

We have not given a precise definition of At and Af for a
general wave packet.

The quantity At is “about how long the wave packet lasts,”
while Af is “about the range of frequencies needing to be
superimposed to produce this wave packet.”



EXAMPLE 40.4 Creating radio-
frequency pulses
QUESTION:

EXAMPLE 40.4 Creating radio-frequency pulses

A short-wave radio station broadcasts at a frequency of
10.000 MHz. What is the range of frequencies of the waves that
must be superimposed to broadcast a radio-wave pulse lasting
0.800 us?



EXAMPLE 40.4 Creating radio-
frequency pulses

MODEL A pulse of radio waves is an electromagnetic wave packet,
hence it must satisfy the relationship AfAr = 1.



EXAMPLE 40.4 Creating radio-
frequency pulses

VISUALIZE FIGURE 40.15 shows the pulse.
FIGURE 40.15 A pulse of radio waves.
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SOLVE The period of a 10.000 MHz oscillation is 0.100 us. A
pulse 0.800 ws in duration is 8 oscillations of the wave. Although
the station broadcasts at a nominal frequency of 10.000 MHz, this
pulse is not a pure 10.000 MHz oscillation. Instead, the pulse has
been created by the superposition of many waves whose frequen-
cies span

| I
Af

~ — = —— = 1.250 X 10° Hz = 1.250 MHz
‘ At 0.800 X 107 °s

This range of frequencies will be centered at the 10.000 MHz
broadcast frequency, so the waves that must be superimposed to
create this pulse span the frequency range

0.375 MHz = f = 10.625 MHz



FIGURE 40.16 Two wave packets with
different Ar.
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This wave packet has a large
frequency uncertainty Af.
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At
This wave packet has a small
frequency uncertainty Af.



The Heisenberg Uncertainty Principle

eThe quantity Ax is the length or spatial extent of a wave
packet.

*Ap, is a small range of momenta corresponding to the
small range of frequencies within the wave packet.

e Any matter wave must obey the condition

/
AxAp, = ;I (Heisenberg uncertainty principle)
This statement about the relationship between the
position and momentum of a particle was proposed by

Heisenberg in 1926. Physicists often just call it the
uncertainty principle.



FIGURE 40.17 A snapshot graph of a wave

packet.
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The Heisenberg Uncertainty Principle

e|f we want to know where a particle is located, we
measure its position x with uncertainty Ax.

e|f we want to know how fast the particle is going, we
need to measure its velocity v, or, equivalently, its
momentum p,. This measurement also has some
uncertainty Ap,.

*You cannot measure both x and p, simultaneously with
arbitrarily good precision.

e Any measurements you make are limited by the condition
that AxAp, > h/2.

eOur knowledge about a particle is inherently uncertain.
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General Principles

Wave Functions and the Probability Density

We cannot predict the exact trajectory of an atomic-level particle such as an electron. The
best we can do is to predict the probability that a particle will be found in some region of /\
space. The probability is determined by the particle’s wave function is(x). \/ .

ix)

* i/r(x) 1s a continuous, wave-like (i.e., oscillatory) function.

+ The probability that a particle will be found in the narrow interval dx at position x is

2

)
Prob(in &x at x) = |i(x)|*dx

* |(x)|? is the probability density P(x).

* For the probability interpretation of {(x) to make sense, the wave function must — *
satisfy the normalization condition:

. [ P(x)dx = J Mr(.r)\zdx =]

That is, it 1s certain that the particle is somewhere on the x-axis.

¢ For an extended interval

i
Prob(x; =x = xg) = J |dr(,r) |2(L1' = area under the curve
A,



General Principles

Heisenberg Uncertainty Principle i)
A particle with wave-like characteristics does not have a precise value n
of position x or a precise value of momentum p,. Both are uncertain. - V
The position uncertainty A x and momentum uncertainty Ap, are related W ﬂ n
by AxAp, = h/2. The more you try to pin down the value of one, the \,n A x
less precisely the other can be known. U U L U U V

h

Wave packet length Ax



Important Concepts

The probability that a particle is
found 1n region A is

Py = lim A : T
— 1nmm - n - =

A Nyt =% h‘rtm

If the probability 1s known, the .

expected number of A outcomes .

in NV trials is Ny = NP, . '

7
Region A



Important Concepts

A wave packet of yor E
duration At can be
created by the ﬂ n :
superposition of many i
waves spanning the F n .

frequency range Af. “ﬂU v
These are related by U J
U

IR

Wave packet duration Ar

AfAt = 1




The figure shows the detection of photons in an
optical experiment. Rank in order, from largest to
smallest, the square of the amplitude function of
the electromagnetic wave at positions A, B, C,
and D.
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This is the wave
function of a
neutron. At what
value of x is the
neutron most likely
to be found?

oo ®p
x

I

x

los)

(x)




The value of the constant a is
P(x) = ()|

(1 -

x (mm)

a=0.5 mm™7/2,
a=1.0mm™2
a=2.0mm™72
a=1.0mm™=".
a=2.0mm™.

mooO®mrP



What minimum bandwidth must a
medium have to transmit a
100-ns-long pulse?

100 MHz
0.1 MHz
1 MHz

10 MHz
1000 MHz

mooO®mPr



