Publisher's Solution for HW # 8

CONCEPTUAL QUESTIONS

25.1. θ_1 decreases. As the crystal is compressed, the spacing *d* between the planes of atoms decreases. The Bragg condition is $m\lambda = 2d\cos\theta_m$ so as *d* decreases, $\cos\theta_m$ must increase. But $\cos\theta$ increases as θ decreases.

25.2.(a) $E_a > E_b > E_c$ because the energy per photon depends only on the frequency so $E = hf = hc/\lambda$. The smaller wavelengths correspond to higher frequencies. (b) $N_c > N_b > N_a$ because the powers are equal, there must be more photons when the energy per photon is less.

25.3.
$$\frac{E_2}{E_1} = \frac{hc/\lambda_2}{hc/\lambda_1} = \frac{\lambda_1}{2\lambda_1} = \frac{1}{2}$$

25.5.Fast electrons will have a shorter wavelength leading to less diffraction spreading and better resolution.

25.7.Because $E_n = n^2 \frac{h^2}{8mL^2}$ we see that for a given *n*, E_n is inversely proportional to L^2 . If *L* is doubled then E_n is decreased by a factor of 4. So the new $E_1 = 1 \times 10^{-19}$ J.

25.8. It is the same, or
$$1.0 \times 10^{-20}$$
 J. $E_{\rm H_1} = \frac{h^2}{8m_0L_0^2}$ $E_{\rm H_2} = \frac{h^2}{8(4m_0)\left(\frac{L_0}{2}\right)^2} = E_{\rm H_1}$

EXERCISES AND PROBLEMS

25.4.Model: The angles of incidence for which diffraction from parallel planes occurs satisfy the Bragg condition. **Solve:** The Bragg condition is $2d \cos\theta_m = m\lambda$, where m = 1, 2, 3, ... For first and second order diffraction,

$$2d\cos\theta_1 = (1)\lambda$$
, $2d\cos\theta_2 = (2)\lambda$

Dividing these two equations,

$$\frac{\cos\theta_2}{\cos\theta_1} = 2 \Rightarrow \theta_2 = \cos^{-1}(2\cos\theta_1) = \cos^{-1}(2\cos68^\circ) = 41^\circ$$

25.7.Model:The angles corresponding to the various diffraction orders satisfy the Bragg condition.

Solve: The Bragg condition is $2d\cos\theta_m = m\lambda$, where m = 1, 2, 3, ... The maximum possible value of *m* is the number of possible diffraction orders. The maximum value of $\cos\theta_m$ is 1. Thus,

$$2d = m\lambda \Rightarrow m = \frac{2d}{\lambda} = \frac{2(0.180 \text{ nm})}{(0.085 \text{ nm})} = 4.2$$

We can observe up to the fourth diffraction order.

25.10.Model:Use the photon model of light.

Solve: The energy of a photon with wavelength λ_1 is $E_1 = hf_1 = hc/\lambda_1$. Similarly, $E_2 = hc/\lambda_2$. Since E_2 is equal to $2E_1$,

$$\frac{hc}{\lambda_2} = 2\frac{hc}{\lambda_1} \Rightarrow \lambda_2 = \frac{\lambda_1}{2} = \frac{600 \text{ nm}}{2} = 300 \text{ nm}$$

Assess: A photon with $\lambda = 300$ nm has twice the energy of a photon with $\lambda = 600$ nm. This is an expected result, because energy is inversely proportional to the wavelength.

25.12.Solve: Your mass is, say, $m \approx 70$ kg and your velocity is 1 m/s. Thus, your momentum is $p = mv \approx (70 \text{ kg})(1 \text{ m/s}) = 70$ kg m/s. Your de Broglie wavelength is

$$\lambda = \frac{h}{p} = \frac{6.63 \times 10^{-34} \text{ Js}}{70 \text{ kg m/s}} \approx 9 \times 10^{-36} \text{ m}$$

25.14.Visualize: We'll employ Equations 25.8 ($\lambda = h/p$) and 25.9 ($E = p^2/2m$) to express the wavelength in terms of kinetic energy.

Solve: First solve Equation 25.9 for $p: p = \sqrt{2mE}$.

$$\lambda = \frac{h}{p} = \frac{h}{\sqrt{2mE}} = \frac{6.63 \times 10^{-34} \,\mathrm{J} \cdot \mathrm{s}}{\sqrt{2(9.11 \times 10^{-31} \,\mathrm{kg})(2.4 \times 10^{-19} \,\mathrm{J})}} = 1.0 \,\mathrm{nm}$$

Assess: The energy given is about 1.5 eV, which is a reasonable amount of energy. The resulting wavelength is a few to a few dozen times the size of an atom.

25.18.Model:Model the 5.0-fm-diameter nucleus as a box of length L = 5.0 fm. **Solve:**The proton's energy is restricted to the discrete values

$$E_n = \frac{h^2}{8mL^2}n^2 = \frac{\left(6.63 \times 10^{-34} \text{ Js}\right)^2 n^2}{8\left(1.67 \times 10^{-27} \text{ kg}\right)\left(5.0 \times 10^{-15} \text{ m}\right)^2} = \left(1.316 \times 10^{-12} \text{ J}\right)n^2$$

where n = 1, 2, 3, ... For n = 1, $E_1 = 1.3 \times 10^{-12} \text{ J}$, for n = 2, $E_2 = (1.316 \times 10^{-12} \text{ J}) 4 = 5.3 \times 10^{-12} \text{ J}$, and for n = 3, $E_3 = 9E_1 = 1.2 \times 10^{-11} \text{ J}$.

25.21.Model:Use the photon model of light.

Solve:(a) The wavelength is calculated as follows:

$$E_{\text{gamma}} = hf = h\left(\frac{c}{\lambda}\right) \Rightarrow \lambda = \frac{\left(6.63 \times 10^{-34} \text{ Js}\right)\left(3.0 \times 10^8 \text{ m/s}\right)}{1.0 \times 10^{-13} \text{ J}} = 2.0 \times 10^{-12} \text{ m}$$

(b) The energy of a visible-light photon of wavelength 500 nm is

$$E_{\text{visible}} = h\left(\frac{c}{\lambda}\right) = \frac{\left(6.63 \times 10^{-34} \text{ Js}\right)\left(3.0 \times 10^8 \text{ m/s}\right)}{500 \times 10^{-9} \text{ m}} = 3.978 \times 10^{-19} \text{ J}$$

The number of photons *n* such that $E_{\text{gamma}} = nE_{\text{visible}}$ is

$$n = \frac{E_{\text{gamma}}}{E_{\text{visible}}} = \frac{1.0 \times 10^{-13} \text{ J}}{3.978 \times 10^{-19} \text{ J}} = 2.5 \times 10^{5}$$

25.22.Model:Use the photon model. **Solve:**The energy of a 1000 kHz photon is

$$E_{\text{photon}} = hf = (6.63 \times 10^{-34} \text{ Js})(1000 \times 10^{3} \text{ Hz}) = 6.63 \times 10^{-28} \text{ J}$$

The energy transmitted each second is 20×10^3 J. The number of photons transmitted each second is 20×10^3 J/6.63 × 10^{-28} J = 3.0×10^{31} .

25.25.Model:Use the photon model of light and the Bragg condition for diffraction.

Solve: The Bragg condition for the reflection of x-rays from a crystal is $2d\cos\theta_m = m\lambda$. To determine the angles of incidence θ_m , we need to first calculate λ . The wavelength is related to the photon's energy as $E = hc/\lambda$. Thus,

$$\lambda = \frac{hc}{E} = \frac{\left(6.63 \times 10^{-34} \text{ Js}\right)\left(3.0 \times 10^8 \text{ m/s}\right)}{1.50 \times 10^{-15} \text{ J}} = 1.326 \times 10^{-10} \text{ m}$$

From the Bragg condition,

$$\theta_m = \cos^{-1}\left(\frac{m\lambda}{2d}\right) = \cos^{-1}\left[\frac{\left(1.326 \times 10^{-10} \text{ m}\right)m}{2\left(0.21 \times 10^{-9} \text{ m}\right)}\right] = \cos^{-1}(0.3157m) \Rightarrow \theta_1 = \cos^{-1}(0.3157) = 71.6^{\circ}$$

Likewise, $\theta_2 = \cos^{-1}(0.3157 \times 2) = 50.8^{\circ}$ and $\theta_3 = 18.7^{\circ}$. Note that $\theta_4 = \cos^{-1}(0.3157 \times 4)$ is not allowed because the $\cos\theta$ cannot be larger than 1. Thus, the x-rays will be diffracted at angles of incidence equal to 18.7° , 50.8° , and 71.6° .

25.29.Model:Particles have a de Broglie wavelength given by $\lambda = h/p$. The wave nature of the particles causes an interference pattern in a double-slit apparatus.

Solve:(a) Since the speed of the neutron and electron are the same, the neutron's momentum is

$$p_{\rm n} = m_{\rm n} v_{\rm n} = \frac{m_{\rm n}}{m_{\rm e}} m_{\rm e} v_{\rm n} = \frac{m_{\rm n}}{m_{\rm e}} m_{\rm e} v_{\rm e} = \frac{m_{\rm n}}{m_{\rm e}} p_{\rm e}$$

where m_n and m_e are the neutron's and electron's masses. The de Broglie wavelength for the neutron is

$$\lambda_{\rm n} = \frac{h}{p_{\rm n}} = \frac{h}{p_{\rm e}} \frac{p_{\rm e}}{p_{\rm n}} = \lambda_{\rm e} \frac{m_{\rm e}}{m_{\rm n}}$$

From Section 22.2 on double-slit interference, the fringe spacing is $\Delta y = \lambda L/d$. Thus, the fringe spacing for the electron and neutron are related by

$$\Delta y_{\rm n} = \frac{\lambda_{\rm n}}{\lambda_{\rm e}} \Delta y_{\rm e} = \frac{m_{\rm e}}{m_{\rm n}} \Delta y_{\rm e} = \left(\frac{9.11 \times 10^{-31} \text{ kg}}{1.67 \times 10^{-27} \text{ kg}}\right) (1.5 \times 10^{-3} \text{ m}) = 8.18 \times 10^{-7} \text{ m} = 0.818 \,\mu \text{ m}$$

(b) If the fringe spacing has to be the same for the neutrons and the electrons,

$$\Delta y_{e} = \Delta y_{n} \Rightarrow \lambda_{e} = \lambda_{n} \Rightarrow \frac{h}{m_{e}v_{e}} = \frac{h}{m_{n}v_{n}} \Rightarrow v_{n} = v_{e}\frac{m_{e}}{m_{n}} = (2.0 \times 10^{6} \text{ m/s}) \left(\frac{9.11 \times 10^{-31} \text{ kg}}{1.67 \times 10^{-27} \text{ kg}}\right) = 1.1 \times 10^{3} \text{ m/s}$$

25.30.Model: Electrons have a de Broglie wavelength given by $\lambda = h/p$. The wave nature of the electrons causes a diffraction pattern.

Solve: The width of the central maximum of a single-slit diffraction pattern is given by Equation 22.22:

$$w = \frac{2\lambda L}{a} = \frac{2Lh}{ap} = \frac{2Lh}{amv} = \frac{2(1.0 \text{ m})(6.63 \times 10^{-34} \text{ Js})}{(1.0 \times 10^{-6} \text{ m})(9.11 \times 10^{-31} \text{ kg})(1.5 \times 10^{6} \text{ m/s})} = 9.7 \times 10^{-4} \text{ m} = 0.97 \text{ mm}$$

25.32.Model:Electrons have a de Broglie wavelength given by $\lambda = h/p$.

Visualize:Please refer to Figure 25.11. [REFER TO THE SUPPLEMENTAL FOR THE IMAGE AND ANALYSIS THEREOF] Notice that a scattering angle $\phi = 60^{\circ}$ corresponds to an angle of incidence $\theta = 30^{\circ}$.

Solve:Equation 25.6 describes the Davisson-Germer experiment: $D\sin(2\theta_m) = m\lambda$. Assuming m = 1, this equation simplifies to $D\sin 2\theta = \lambda$. Using $\lambda = h/mv$, we have

$$D = \frac{h}{mv\sin 2\theta} = \frac{6.63 \times 10^{-34} \text{ Js}}{\left(9.11 \times 10^{-31} \text{ kg}\right) \left(4.30 \times 10^6 \text{ m/s}\right) \sin(60^\circ)} = 1.95 \times 10^{-10} \text{ m} = 0.195 \text{ nm}$$

25.33.Model:A confined particle can have only discrete values of energy. **Solve:**(**a**) Equation 25.14 simplifies to

$$E_n = \frac{h^2}{8mL^2}n^2 = \frac{\left(6.63 \times 10^{-34} \text{ Js}\right)^2}{8\left(9.11 \times 10^{-31} \text{ kg}\right)\left(0.70 \times 10^{-9} \text{ m}\right)^2} = \left(1.231 \times 10^{-19} \text{ J}\right)n^2$$

Thus, $E_1 = (1.231 \times 10^{-19} \text{ J})(1^2) = 1.2 \times 10^{-19} \text{ J}$, $E_2 = (1.231 \times 10^{-19} \text{ J})(2^2) = 4.9 \times 10^{-19} \text{ J}$, and $E_3 = 1.1 \times 10^{-18} \text{ J}$. (b) The energy is $E_2 - E_1 = 4.9 \times 10^{-19} \text{ J} - 1.2 \times 10^{-19} \text{ J} = 3.7 \times 10^{-19} \text{ J}$.

(c) Because energy is conserved, the photon will carry an energy of $E_2 - E_1 = 3.69 \times 10^{-19}$ J. That is,

$$E_2 - E_1 = E_{\text{photon}} = hf = \frac{hc}{\lambda} \Rightarrow \lambda = \frac{hc}{E_2 - E_1} = \frac{(6.63 \times 10^{-34} \text{ Js})(3.0 \times 10^8 \text{ m/s})}{3.69 \times 10^{-19} \text{ J}} = 540 \text{ nm}$$

25.34.Model: A particle confined in a one-dimensional box has discrete energy levels. **Solve:** (a) Equation 24.14 for the n = 1 state is

$$E_n = \frac{h^2}{8mL^2} = \frac{\left(6.63 \times 10^{-34} \text{ Js}\right)^2}{8\left(10 \times 10^{-3} \text{ kg}\right)\left(0.10 \text{ m}\right)^2} = 5.5 \times 10^{-64} \text{ J}$$

The minimum energy of the Ping-Pong ball is $E_1 = 5.5 \times 10^{-64}$ J. (b) The speed is calculated as follows:

$$E_1 = 5.50 \times 10^{-64} \text{ J} = \frac{1}{2} m v^2 = \frac{1}{2} (10 \times 10^{-3} \text{ kg}) v^2 \Rightarrow v = \sqrt{\frac{2(5.50 \times 10^{-64} \text{ J})}{10 \times 10^{-3} \text{ kg}}} = 3.3 \times 10^{-31} \text{ m/s}$$

25.39.Model:A particle confined in a one-dimensional box of length *L* has the discrete energy levels given by Equation 24.14. **Solve:**(a) Since the energy is entirely kinetic energy,

$$E_n = \frac{h^2}{8mL^2}n^2 = \frac{p^2}{2m} = \frac{1}{2}mv_n^2 \Rightarrow v_n = \frac{h}{2mL}n \qquad n = 1, 2, 3, \dots$$

(b) The first allowed velocity is

$$v_1 = \frac{6.63 \times 10^{-34} \text{Js}}{2(9.11 \times 10^{-31} \text{ kg})(0.20 \times 10^{-9} \text{ m})} = 1.82 \times 10^6 \text{ m/s}$$

For n = 2 and n = 3, $v_2 = 3.64 \times 10^6$ m/s and $v_3 = 5.46 \times 10^6$ m/s.