
Chapter 23 

Conceptual questions. 

23.3. Light is scattered off all points of the pencil and into all directions of space. If light directed toward the mirror 

is reflected into your eye, you see the image of the pencil. (a) As part (a) of the figure shows, if the top half of the 

mirror is covered, light scattered from the pencil and reflected off the mirror can enter your eye and you will see the 

image of the pencil. (b) As part (b) of the figure shows, if the bottom half of the mirror is covered, light scattered from 

the pencil cannot be reflected off the mirror in such a matter that it enters your eye. You cannot see the image of the 

pencil. 

 

23.5.  

The light that enters the plastics (color filters) is white which suggests that it is a mixture of all coloirs in the 

spectrum.  Therefore the colour of the sections would be  

Section 1: Blue; all other colors are absorbed. Except blue light 

Section 2: It filters all but red initially and then the blue plasyic filters red. Hence no light passes through . Therefore 

Black 

Section 3: Red; all other colors are absorbed. 

23.6. The card is red because it reflects red light and absorbs the other colors. When it is illuminated by red light the 

red light reflects off the card into your eyes and you see the red card as red. If the card is illuminated with blue light 

the light is all absorbed. No light is reflected, so the card looks black. If you illuminate the card with white light and 

look at it through a blue filter it will again look black because the red light reflected by the card is not passed by the 

blue filter. 

23.8. (a) Two rays cross at the image point. Since the image point has to be found by the intersection of two or 

more lines (in ray diagram they are the reflected/refracted rays) hence at least 2 rays are required. We in general select 

the 2 rays of whose path we know. One is parallel to the principal axis and the other passes through the optical center 

of the lens. 

(b) An infinite number! All those that strike the lens from the object point will converge to the image point. 

 

23.9. You will still see the entire image, but it will be dimmer as less light passes through the lens. Rays originating  



from the object move in all possible directions. All there rays are refracted by the lens to give the final image. Rays 

strike the opper half of the lens as much as they strike the lower half. Hence just covering the upper half will remove 

those rays from contributing to the final image but the rays that pass through the lower half will form an image which 

would then be dimmer than the original since almost half of the rays don’t reach the screen. 

Exercises and problems  

23.3. Model: Light rays travel in straight lines. The light source is a point source. 

Visualize:     

 

Solve: Let w be the width of the aperture. Then from the geometry of the figure, 

12.0 cm

2.0 m 2.0 m  1.0 m

w
=

+
 ⇒  w = 8.0 cm 

23.7. Model: Light rays travel in straight lines and follow the law of reflection. 

Visualize:  

 

Solve: We are asked to obtain the distance h = x1 + 5.0 cm. From the geometry of the diagram, 
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1 115 cm 100 cm 10x x= −  ⇒  x1 = 4.0 cm 

Thus, the ray strikes a distance 9.0 cm below the top edge of the mirror. 

 

23.11. Model: Use the ray model of light and the law of reflection. 

Visualize:  



 

We only need one ray of light that leaves your toes and reflects in your eye. 

Solve: From the geometry of the diagram, the distance from your eye to the toes’ image is 

2 22 (400 cm) (165 cm) 433 cmd = + =  

Assess: The light appears to come from your toes’ image. 

23.12. Model: Use the ray model of light and Snell’s law. 

Visualize:  

 

Solve: According to Snell’s law for the air-water and water-glass boundaries, 

air air water water
sin sinn nθ θ=   water water glass glasssin sinn nθ θ=  

From these two equations, we have 

air air glass glasssin sinn nθ θ= ⇒ air
glass air

glass

1.0
sin sin sin60

1.50

n

n
θ θ

 
= = ° 

 
⇒ 1
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sin 35
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θ − ° 

= = ° 
 

 

23.14. Model: Use the ray model of light. The sun is a point source of light. 

Visualize:  

 

A ray that arrives at the diver 50° above horizontal refracted into the water at θwater = 40°. 

Solve: Using Snell’s law at the water-air boundary 

air air water water
sin sinn nθ θ= ⇒  water

air water

air

1.33
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n

n
θ θ

 
= = ° 

 
 



⇒ θair = 58.7° 

Thus the height above the horizon is θ = 90° − θair = 31.3° 31 .≈ °  Because the sun is far away from the fisherman (and 

the diver), the fisherman will see the sun at the same angle of 31°  above the horizon. 

23.16. Model: Use the ray model of light. For an angle of incidence greater than the critical angle, the ray of light 

undergoes total internal reflection. 

Visualize:  

 

Solve: The critical angle of incidence is given by Equation 23.9: 
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Thus, the maximum angle a light ray can make with the wall of the core to remain inside the fiber is 90° − 67.7° = 

23.3°. 

Assess: We can have total internal reflection because ncore > ncladding. 

23.18. Model: Represent the can as a point source and use the ray model of light. 

Visualize:  

 

Paraxial rays from the can refract into the water and enter into the fish’s eye. 

Solve: The object distance from the edge of the aquarium is s. From the water side, the can appears to be at an 

image distance s′ = 30 cm. Using Equation 23.13, 
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⇒
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23.19. Model: Represent the beetle as a point source and use the ray model of light. 

Visualize:  

 

Paraxial rays from the beetle refract into the air and then enter into the observer’s eye. The rays in the air when 

extended into the plastic appear to be coming from the beetle at a shallower location, a distance s′ from the plastic-air 

boundary. 



Solve: The actual object distance is s and the image distance is s′ = 2.0 cm. Using Equation 23.13, 

2 air

1 plastic

n n
s s s

n n
′ = = ⇒

1.0
2.0 cm

1.59
s= ⇒  s = 3.2 cm 

Assess: The beetle is much deeper in the plastic than it appears to be. 

23.22. Model: Use the ray model of light. 

Visualize:  

 

Solve: Using Snell’s law, 

air red redsin30 sinn n θ° =  ⇒
1

red

sin30
sin 19.2

1.52
θ − ° 

= = ° 
 

 

air violet violetsin30 sinn n θ° = ⇒
1

violet

sin30
sin 18.8

1.55
θ − ° 

= = ° 
 

 

Thus the angular spread is 

red violet
19.2 18.8 0.4θ θ θ∆ = − = ° − ° = °  

 

23.26. Model: Use ray tracing to locate the image. 

Solve:  

 

The figure shows the ray-tracing diagram using the steps of Tactics Box 23.2. You can see from the diagram that the 

image is in the plane where the three special rays converge. The image is inverted and is located at s′ = 20.0 cm to the 

right of the converging lens. 

 

 

 

 

 



23.27. Model: Use ray tracing to locate the image. 

Solve:  

 

The figure shows the ray-tracing diagram using the steps of Tactics Box 23.2. You can see from the diagram that the 

image is in the plane where the three special rays converge. The image is located at s′ = 15 cm to the right of the 

converging lens, and is inverted. 

23.28. Model: Use ray tracing to locate the image. 

Solve:  

 

The figure shows the ray-tracing diagram using the steps of Tactics Box 23.2. You can see that the rays after 

refraction do not converge at a point on the refraction side of the lens. On the other hand, the three special rays, when 

extrapolated backward toward the incidence side of the lens, meet at P′, which is 15 cm from the lens. That is, s′ = −15 

cm. The image is upright. 

23.29. Model: Use ray tracing to locate the image. 

Solve:  

 

The figure shows the ray-tracing diagram using the steps of Tactics Box 23.3. The three rays after refraction do not 

converge at a point, but they appear to come from P′. P′ is 6 cm from the diverging lens, so s′ = −6 cm. The image is 

upright. 



 

23.30. Model: Assume the biconvex lens is a thin lens. 

Solve: If the object is on the left, then the first surface has R1 = +40 cm (convex toward the object) and the second 

surface has R2 = −40 cm (concave toward the object). The index of refraction of glass is n = 1.50, so the lensmaker’s 

equation is 

( ) ( )
1 2

1 1 1 1 1
1 1.50 1

40 cm 40 cm
n

f R R

   
= − − = − −   

−  
⇒  f = 40 cm 

 

23.31. Model: Assume the planoconvex lens is a thin lens. 

Solve: If the object is on the left, then the first surface has R1 = ∞  and the second surface has R2 = −40 cm (concave 

toward the object). The index of refraction of polystyrene plastic is 1.59, so the lensmaker’s equation is 

( ) ( )
1 2

1 1 1 1 1
1 1.59 1

40 cm
n

f R R

   
= − − = − −   

∞ −  
⇒

1 0.59

40 cmf
= ⇒  f = 68 cm 

 

23.32. Model: Assume the biconcave lens is a thin lens. 

Solve: If the object is on the left, then the first surface has R1 = −40 cm (concave toward the object) and the second 

surface has R2 = +40 cm (convex toward the object). The index of refraction of glass is 1.50, so the lensmaker’s 

equation is 

( ) ( ) ( )
1 2

1 1 1 1 1 1
1 1.50 1 0.50

40 cm 40 cm 20 cm
n

f R R

     
= − − = − − = −     

− +    
⇒  f = −40 cm 

 

23.34. Model: The water is a spherical refracting surface. Consider the paraxial rays that refract from the air into 

the water. 

Solve: If the cat’s face is 20 cm from the edge of the bowl, then  s = +20 cm. The spherical fish bowl surface has R = 

+25 cm, because it is the convex surface that is toward the object. Also n1 = 1 (air) and n2 = 1.33 (water). Using Equation 

23.21, 

1 2 2 1n n n n

s s R

−
+ =

′
11 1.33 1.33 1 0.33

0.0132 cm
20 cm 25 cm 25 cms

−−
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′
 

⇒ ( ) 11.33
0.0132 0.050  cm

s

−= −
′

⇒  s′ = −36 cm 

This is a virtual image located 36 cm outside the fishbowl. The fish, inside the bowl, sees the virtual image. That is, 

the fish sees the cat’s face 36 cm from the bowl. 

23.35. Model: Model the bubble as a point source and consider the paraxial rays that refract from the plastic into 

the air. The edge of the plastic is a spherical refracting surface. 

Visualize:  

 

Solve: The bubble is at P, a distance of 2.0 cm from the surface. So, s = 2.0 cm. A ray from P after refracting from 

the plastic-air boundary bends away from the normal axis and enters the eye. This ray appears to come from P′, so the 

image of P is at P′ and it is a virtual image. Because P faces the concave side of the refracting surface, R = −4.0 cm. 

Furthermore, n1 = 1.59 and n2 = 1.0. Using Equation 23.21, 
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That is, the bubble appears 1.54 cm 1.5 cm≈  beneath the surface. 

 

23.37. Solve: The image is at 40 cm as seen in the figure. It is inverted. 

 

Assess: When the object is outside the focal length we get an inverted image. 

 

23.38. Solve: The image is at 30 cm−  as seen in the figure. It is upright. 

 

Assess: When the object is within the focal length we get a magnified upright image. 

23.39. Solve: The image is at 12 cm−  as seen in the figure. It is upright. 



 

Assess: We expected an upright virtual image from the convex mirror. 

23.45. Use the ray model of light. For an angle of incidence greater  than the critical angle, the ray of light undergoes 

total internal reflection. We have glass having the largest refractive index. We need to take care of total internal 

refletion at the glass-water interface as well as water air interface. However as we keep increasing the angle of 

incidence in glass  we can be sure that the total internal reflection would not take place at the glass water interface 

earlier than it takes place in water-air interface because the critical angle for glass water interface is larger than that 

between water and air. Hence in the limiting condition we have the following situation as shown in the ray diagram 

below. 

Visualize:  

 

For angles θwater that are less than the critical angle, light will be refracted into the air. 

Solve: Snell’s law at the water-air boundary is
air air water water

sin sin .n nθ θ=  Because the maximum angle of θair is 90 ,°  

we have 

( ) water1.0 sin90 1.33sinθ° = ⇒ 1

water

1
sin 48.75

1.33
θ −  

= = ° 
 

 

Applying Snell’s law again to the glass-water boundary, 

glass glass water watersin sinn nθ θ= ⇒
( )1 1water

glass water

glass

1.33 sin 48.75
sin sin sin 42

1.50

n

n
θ θ− −

  ° 
= = = °    

  
 

23.46. Model: Use the ray model of light. 

Visualize:  

 

Solve: When the plastic is in place, the microscope focuses on the virtual image of the dot. From the figure, we note 

that s = 1.0 cm and s′ = 1.0 cm − 0.4 cm = 0.6 cm. The rays are paraxial, and the object and image distances are 

measured relative to the plastic-air boundary. Using Equation 23.13, 



air

plastic

n
s s

n
′ = ⇒ ( )

plastic

1.0
0.6 cm  1.0 cm

n
= ⇒ plastic

1.0 cm
1.67

0.6 cm
n = =  

 

Thus 42°  is the maximum angle of incidence onto the glass for which the ray emerges into the air. 

 

23.51. Model: Use the ray model of light and the law of refraction. Assume that the laser beam is a ray of light. 

Visualize:  

 

The laser beam enters the water 2.0 m from the edge, undergoes refraction, and illuminates the goggles. The ray of 

light from the goggles then retraces its path and enters your eyes. 

Solve: From the geometry of the diagram, 

1.0 m
tan

2.0 m
φ =  ⇒  ( )1

tan 0.50 26.57φ −= = ° ⇒
air

90 26.57 63.43θ = ° − ° = °  

Snell’s law at the air-water boundary is 
air air water water

sin sin .n nθ θ=  Using the above result, 

( ) water1.0 sin63.43 1.33sinθ° = ⇒  1

water

sin63.43
sin 42.26

1.33
θ − ° 

= = ° 
 

 

Taking advantage of the geometry in the diagram again, 

( )watertan 3.0 m tan 42.26 2.73 m
3.0 m

x
xθ= ⇒ = ° =  

The distance of the goggles from the edge of the pool is 2.73 m + 2.0 m = 4.73 m 4.7 m.≈  

23.54. Model: Use the ray model of light. Assume that the target is a point source of light. 

Visualize:  

 

Solve: From the geometry of the figure with θair = 60°, 

1
airtan

2.0 m

x
θ = ⇒ ( )( )1 2.0 m tan 60 3.464 mx = ° =  

Let us find the horizontal distance x2 by applying Snell’s law to the air-water boundary. We have 



water water air air
sin sinn nθ θ= ⇒ 1

water

sin60
sin 40.63

1.33
θ − ° 

= = ° 
 

 

Using the geometry of the diagram, 

2
watertan

1.0 m

x
θ= ⇒ ( )2 1.0 m tan 40.63 0.858 mx = ° =  

To determine θtarget, we note that 

target

1 2

3.0 m 3.0 m
tan 0.6941

3.464 m  0.858 mx x
θ = = =

+ +
⇒  θtarget = 35° 

 

 


