
22.2. Because m
m Ly
d
λ

=  increasing λ  and L increases the fringe spacing. Increasing d decreases the fringe 

spacing. Submerging the experiment in water decreases λ  and decreases the fringe spacing. So the answers are 
(a) and (c). 
 



22.4. (a) The equation for gratings does not contain the number of slits, so increasing the number of slits can’t 
affect the angles at which the bright fringes appear as long as d is the same. So the number of fringes on the 
screen stays the same. (b) The number of slits does not appear in the equation for the fringe spacing, so the 
spacing stays the same. (c) Decreases; the fringes become narrower. (d) The equation for intensity does contain 
the number of slits, so each fringe becomes brighter: 2

max 1.I N I=  

 



22.5. aλ < . Several secondary maxima appear. For sin pa pθ λ= , the first minima from the central maximum 

require 1sina θ λ= , which must be less than 1. 

 



22.6. (a) The width increases because 1
1.22
D
λθ = . (b) The width decreases because 1

1.22
D
λθ = . (c) Almost 

uniformly gray with no minima. 
 



22.7. When the experiment is immersed in water the frequency of the light stays the same. But the speed is 
slower, so the wavelength is smaller. When the wavelength is smaller the fringes get closer together because 

.Ly
d
λ

Δ =  

 



22.10. If the wavelength is changed to / 2λ  there will still be crests everywhere there were crests before (plus 
new crests halfway between, where there used to be troughs). If the interferometer was set up to display 
constructive interference originally, then crests were arriving from each arm of the interferometer together at the 
detector. That will still be true when the wavelength is halved. So the central spot remains bright. 
 



22.2. Model: Two closely spaced slits produce a double-slit interference pattern. 
Visualize: The interference pattern looks like the photograph of Figure 22.3(b). It is symmetrical, with the m = 
2 fringes on both sides of and equally distant from the central maximum. 
Solve: The two paths from the two slits to the m = 2 bright fringe differ by 2 1r r rΔ = − , where 

( )2 2 500 nm 1000 nmr mλ λΔ = = = =  

Thus, the position of the m = 2 bright fringe is 1000 nm farther away from the more distant slit than from the 
nearer slit. 
 



22.3. Model: Two closely spaced slits produce a double-slit interference pattern. 
Visualize: The interference pattern looks like the photograph of Figure 22.3(b). 
Solve: The bright fringes are located at positions given by Equation 22.4, sin .md mθ λ=  For the m = 3 bright 

orange fringe, the interference condition is ( )9
3sin 3 600 10  md θ −= × . For the m = 4 bright fringe the condition 

is 4sin 4 .d θ λ=  Because the position of the fringes is the same, 

( ) ( )9 93
3 4 4sin sin 4 3 600 10  m 600 10  m 450 nmd dθ θ λ λ− −= = = × ⇒ = × =  

 



22.4. Model: Two closely spaced slits produce a double-slit interference pattern. 
Visualize: The interference pattern looks like the photograph of Figure 22.3(b). 
Solve: The formula for fringe spacing is 

Ly
d
λ

Δ = ⇒ ( )3 91.8 10  m 600 10  m L
d

− −× = × ⇒ 3000L
d
=  

The wavelength is now changed to 400 nm, and ,L d  being a part of the experimental setup, stays the same. 
Applying the above equation once again, 

( )( )9400 10  m 3000 1.2 mmLy
d
λ −Δ = = × =  

 



22.8. Model: Two closely spaced slits produce a double-slit interference pattern. 
Visualize: The interference pattern looks like the photograph of Figure 22.3(b). 
Solve: In a span of 12 fringes, there are 11 gaps between them. The formula for the fringe spacing is 

Ly
d
λ

Δ = ⇒
3 952 10  m (633 10  m)(3.0 m)

11 d

− −⎛ ⎞× ×
=⎜ ⎟

⎝ ⎠
⇒ d = 0.40 mm 

Assess: This is a reasonable distance between the slits, ensuring 41.34 10 1d L −= × << . 

 



22.10. Model: A diffraction grating produces a series of constructive-interference fringes at values of mθ  
determined by Equation 22.15. 
Solve: We have 

sin        0,  1, 2, 3, md m mθ λ= = … ⇒ sin 20.0 1d λ° =  and 2sin 2d θ λ=  

Dividing these two equations, 

2sin 2sin 20.0 0.6840θ = ° =  ⇒ 2 43.2θ = °  

 



22.11. Model: A diffraction grating produces an interference pattern. 
Visualize: The interference pattern looks like the diagram in Figure 22.8. 
Solve: The bright constructive-interference fringes are given by Equation 22.15: 

sin md mθ λ= ⇒
9

6(2)(600 10  m) 1.89 10  m
sin sin(39.5 )m

md λ
θ

−
−×

= = = ×
°

 

The number of lines in per millimeter is 3 6(1 10  m) (1.89 10  m) 530.− −× × =  

 



22.13. Model: A diffraction grating produces an interference pattern. 
Visualize: The interference pattern looks like the diagram of Figure 22.8. 
Solve: The bright interference fringes are given by 

sin md mθ λ=  m = 0, 1, 2, 3, … 

The slit spacing is 61 mm 500 2.00 10  md −= = ×  and m = 1. For the red and blue light, 

9
1

1 red 6

656 10  msin 19.15
2.00 10  m

θ
−

−
−

⎛ ⎞×
= = °⎜ ⎟×⎝ ⎠

  
9

1
1 blue 6

486 10  msin 14.06
2.00 10  m

θ
−

−
−

⎛ ⎞×
= = °⎜ ⎟×⎝ ⎠

 

The distance between the fringes, then, is 1 red 1 bluey y yΔ = −  where 

( )
( )

1 red

1 blue

1.5 m tan19.15 0.521 m

1.5 m tan14.06 0.376 m

y

y

= ° =

= ° =
 

So, 0.145 m 14.5 cm.yΔ = =  

 



22.15. Model: A narrow single slit produces a single-slit diffraction pattern. 
Visualize: The intensity pattern for single-slit diffraction will look like Figure 22.14. 
Solve: The minima occur at positions 

p
Ly p
a
λ

=  

2 1
2 1So L L Ly y y
a a a
λ λ λ

Δ = − = − = ⇒
( )( )9

4633 10  m 1.5 m
2.0 10  m  0.20 mm

0.00475 m
La
y

λ −
−

×
= = = × =
Δ

 



22.21. Model: The crack in the cave is like a single slit that causes the ultrasonic sound beam to diffract. 
Visualize:  

 
Solve: The wavelength of the ultrasound wave is 

340 m/s 0.0113 m
30 kHz

λ = =  

Using the condition for complete destructive interference with p = 1, 

1sina θ λ= ⇒ 1
1

0.0113 msin 2.165
0.30 m

θ − ⎛ ⎞= = °⎜ ⎟
⎝ ⎠

 

From the geometry of the diagram, the width of the sound beam is 

( )1 12 2 100 m tan 200 m tan 2.165 7.6 mw y θ= = × = × ° =  

Assess: The small-angle approximation is almost always valid for the diffraction of light, but may not be valid 
for the diffraction of sound waves, which have a much larger wavelength. 
 



22.24. Model: Light passing through a circular aperture leads to a diffraction pattern that has a circular 
central maximum surrounded by a series of secondary bright fringes. 
Visualize: The intensity pattern will look like Figure 22.15. 
Solve: From Equation 22.24, the diameter of the circular aperture is 

9

2

2.44 2.44(633 10  m)(4.0 m) 0.25 mm
2.5 10  m

LD
w
λ −

−

×
= = =

×
 

 



22.26. Model: An interferometer produces a new maximum each time L2 increases by 1
2 λ  causing the path-

length difference Δr to increase by λ. 
Visualize: Please refer to the interferometer in Figure 22.20. 
Solve: From Equation 22.33, the wavelength is 

6
722 2(100 10  m) 4.0 10  m 400 nm

500
L
m

λ
−

−Δ ×
= = = × =

Δ
 



22.29. Model: An interferometer produces a new maximum each time L2 increases by 1
2 λ  causing the path-

length difference Δr to increase by λ. 
Visualize: Please refer to the interferometer in Figure 22.20. 
Solve: For sodium light of the longer wavelength (λ1) and of the shorter wavelength (λ2), 

( )1 21
2 2

L m L mλ λ
Δ = Δ = +  

We want the same path difference 2(L2 − L1) to correspond to one extra wavelength for the sodium light of 
shorter wavelength (λ2) . Thus, we combine the two equations to obtain: 

( ) ( )1 2
1 2 21

2 2
m m mλ λ λ λ λ= + ⇒ − = 2

1 2

589.0 nm 981.67 982
589.6 nm 589.0 nm

m λ
λ λ

⇒ = = = ≅
− −

 

Thus, the distance by which M2 is to be moved is 

1 589.6 nm982 0.2895 mm
2 2

L m λ ⎛ ⎞Δ = = =⎜ ⎟
⎝ ⎠

 

 



22.32. Model: Two closely spaced slits produce a double-slit interference pattern. 
Visualize: The interference fringes are equally spaced on both sides of the central maximum. The interference 
pattern looks like Figure 22.3(b). 
Solve: In the small-angle approximation 

1 ( 1)m m m m
d d d
λ λ λθ θ θ+Δ = − = + − =  

Since 200 ,d λ=  we have 

1 rad 0.286
200d

λθΔ = = = °  

 



22.43. Model: A diffraction grating produces an interference pattern that is determined by both the slit 
spacing and the wavelength used. The visible spectrum spans the wavelengths 400 nm to 700 nm. 
Solve: According to Equation 22.16, the distance ym from the center to the mth maximum is tanm my L θ= . The 
angle of diffraction is determined by the constructive-interference condition sin md mθ λ= , where m = 0, 1, 2, 3, 
… The width of the rainbow for a given fringe order is thus w = yred − yviolet. The slit spacing is 

3
61 mm 1.0 10  m 1.6667 10  m

600 600
d

−
−×

= = = ×  

For the red wavelength and for the m = 1 order, 

( )
9

1 1
1 1 6

700 10  msin 1 sin sin 24.83
1.6667 10  m

d
d
λθ λ θ

−
− −

−

×
= ⇒ = = = °

×
 

From the equation for the distance of the fringe, 

( ) ( )red 1tan 2.0 m tan 24.83 92.56 cmy L θ= = ° =  

Likewise for the violet wavelength, 

( ) ( )
9

1
1 violet6

400 10  msin 13.88 2.0 m tan 13.88 49.42 cm
1.6667 10  m

yθ
−

−
−

⎛ ⎞×
= = °⇒ = ° =⎜ ⎟×⎝ ⎠

 

The width of the rainbow is thus 92.56 cm − 49.42 cm = 43.14 cm 43 cm≈ . 
 



22.48. Visualize: The relationship between the diffraction grating spacing d, the angle at which a particular 
order of constructive interference occurs ,mθ  the wavelength of the light, and the order of the constructive 
interference m  is sin md mθ λ= . Also note 1 .N d= /  
Solve: The first order diffraction angle for green light is 

1 1 7 6 1
1 sin ( ) sin (5 5 10  m 2 0 10  m) sin (0 275) 0 278 rad 16dθ λ− − − − −= / = . × / . × = . = . = °  

Assess: This is a reasonable angle for a first order maximum. 
 



22.52. Model: A narrow slit produces a single-slit diffraction pattern. 
Visualize: The diffraction-intensity pattern from a single slit will look like Figure 22.14. 
Solve: As given by Equation 22.19, the dark fringes in the pattern are located at sin pa pθ λ= , where p = 1, 2, 3, 
… For the diffraction pattern to have no minima, the first minimum must be located at least at θ1 = 90 .°  From 
the constructive-interference condition sin pa pθ λ= , we have 

633 nm
sin sin90p

pa aλ λ λ
θ

= ⇒ = = =
°

 

 



22.58. Model: The antenna is a circular aperture through which the microwaves diffract. 
Solve: (a) Within the small-angle approximation, the width of the central maximum of the diffraction pattern is 
w = 2.44λL/D. The wavelength of the radiation is 

8 3

9

3 10  m/s 2.44(0.025 m)(30 10  m)0.025 m 920 m
12 10  Hz 2.0 m

c w
f

λ × ×
= = = ⇒ = =

×
 

That is, the diameter of the beam has increased from 2.0 m to 915 m, a factor of 458. 
(b) The average microwave intensity is 

( )

3
2

21
2

100 10  W 0.15 W/m
area 915 m

PI
π

×
= = =

⎡ ⎤⎣ ⎦
 

 



22.60. Model: The laser light is diffracted by the circular opening of the laser from which the beam emerges. 
Solve: The diameter of the laser beam is the width of the central maximum. We have 

2.44 Lw
D
λ

= ⇒
( )( )9 82.44 532 10  m 3.84 10  m2.44 0.50 m

1000 m
LD

w
λ −× ×

= = =  

In other words, the laser beam must emerge from a laser of diameter 50 cm. 
 



22.63. Model: An interferometer produces a new maximum each time 2L  increases by 1
2 λ  causing the path-

length difference Δr to increase by λ. 
Visualize: Please refer to the interferometer in Figure 22.20. 
Solve: The path-length difference between the two waves is Δr = 2L2 − 2L1. The condition for constructive 
interference is Δr = mλ, hence constructive interference occurs when 

( ) ( )1 1
2 1 2 1 22 22 1200 600L L m L L mλ λ λ λ− = ⇒ − = = =  

where λ = 632.8 nm is the wavelength of the helium-neon laser. When the mirror M2 is moved back and a 
hydrogen discharge lamp is used, 1200 fringes shift again. Thus, 

( )1
2 1 21200 600L L λ λ′ ′ ′− = =  

where 656.5 nm.λ′ =  Subtracting the two equations, 

( ) ( ) ( ) ( )9 9
2 1 2 1 600 600 632.8 10  m 656.5 10  mL L L L λ λ − −′ ′− − − = − = × − ×  

⇒ 6
2 2 14.2 10  mL L −′ = + ×  

That is, M2 is now 14.2 μm closer to the beam splitter. 
 



22.66. Model: The piece of glass increases the number of wavelengths in one arm of the interferometer. 
Each additional wavelength causes one bright-dark-bright fringe shift. 
Solve: We can rearrange Equation 22.36 to find that the index of refraction of glass is 

vac1
2
mn
d

λ Δ
= +

( )( )
( )

9

3

500 10  nm 200
1

2 0.10 10  m

−

−

×
= +

×
= 1.50 

 


