
HW 13 
Chapter 41: One-Dimensional Quantum Mechanics 

 
 
 Conceptual Questions 

 

41.2. Five. 

 

41.4. a b c.       is independent of L. 
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 Exercises and Problems 

 
41.1. Model: Model the electron as a particle in a rigid one-dimensional box of length L. 
Solve: Absorption occurs from the ground state n  1. It’s reasonable to assume that the transition is from n  1 
to n  2. The energy levels of an electron in a rigid box are 
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The absorbed photons must have just the right energy, so 
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41.4. Model: Model the electron as a particle in a rigid one-dimensional box of length L. 
Solve: From Equation 41.23, the energies of the stationary states for a particle in a box are En  n2E1, where En 
is the energy of the stationary state with quantum number n. It can be seen either from Figure 41.7 or from the 

wave function equation 
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41.5. Solve: From Equation 41.41, the units of the penetration distance are 
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41.6. Solve: (a)  

 

(b) For n  2, the probability of finding the particle at the center of the well is zero. This is because the wave 
function is zero at that point. 
(c) This is consistent with standing waves. The n  2 standing wave on a string has a node at the center of the 
string. 

 
 
 

41.7. Model: The wave function decreases exponentially in the classically forbidden region. 

Solve: The probability of finding a particle in the small interval x  at position x is Prob(in x  at x) 2= | ( ) | .x x   

Thus the ratio 
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The wave function in the classically forbidden region x  L is 
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41.9. Solve: According to Equation 41.41, the penetration depth is  02m U E    . Hence, 
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The electron’s energy is 0.038 eV below  0.U



41.11. Visualize:  

 

Solve: There are three factors to consider. First, the de Broglie wavelength increases as the particle’s speed and 
kinetic energy decreases. Thus, the spacing between the nodes of  (x) increases in regions where U is larger. 
Second, a particle is more likely to be found where it is moving the slowest. Thus, the amplitude of  (x) 
increases in regions where U is larger. Third, for n  6 there will be six antinodes to place. 

 
 
 
 
 

41.12. Visualize:  

 

Solve: There are three factors to consider. First, the de Broglie wavelength increases as the particle’s speed and 
kinetic energy decreases. Thus, the spacing between the nodes of  (x) increases in regions where U is larger. 
Second, a particle is more likely to be found where it is moving the slowest. Thus, the amplitude of  (x) 
increases in regions where U is larger. Third, for n  8 there will be eight antinodes to place. 

 
 
 
 

41.14. Visualize:  

 

The steps of Tactics Box 41.1 have been followed to sketch the wave functions shown in the figure. 
 
 
 
 
 
 

 



41.23. Solve: A function  (x) is a solution to the Schrödinger equation if 
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Let  (x)  A 1(x)  B 2(x), where  1(x) and  2(x) are both known to be solutions of the Schrödinger equation. 
The second derivative of  (x) is 

  

d 2
dx2


d 2

dx2
A

1
(x)  B

2
(x)  A

d 2
1

dx2
 B

d 2
2

dx2
 

Since  1(x) and  2(x) are solutions, it must be the case that 
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Using these results, the second derivative of  (x) becomes 
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Thus  (x) is a solution to the Schrödinger equation. 
 
 
 

41.25. Model: Model the particle as a particle in a rigid one-dimensional box of length L. 
Solve: (a) From Equation 41.22, the particle’s energies are 
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41.27.  Solve:  From Equation 41.20, the wave functions for a particle in a box of length L 

are
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41.29. Model: Model the particle as being confined in a rigid one-dimensional box of length L. 
Visualize: 

 

Solve:  (a) The probability density is     2 22 sinn .x L n x L   Graphs of   2

1 ,x    2

2 ,x  and 

  2

2 x  are shown above. 

(b) The particle is most likely to be found at x where   2
x  is a maximum. See table in part (d). 

(c) The particle is least likely to be found at x where   2
0.x   See table in part (d). 

(d) The probability of finding the particle in the left one-third of the box is the area under the   2
x  curve 

between x  0 and 1
3 .x L  From examining the graphs, we can determine whether this is more than, less than, or 

equal to one-third of the total area. The results are shown in the table below. 
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(e) The probability of finding the particle in the range 1
30 x L   is 
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The probability is 0.195 for  0.402 for 1,n  2,n   and 0.333 for 3.n   
Assess: The results agree with the earlier estimates of the probability. 

 
 


