
40.2. The  relat ionship  between  probabil ity  and  probabi li ty  density  i s  simi lar  to  the 
relationship  between  mass  m  and  mass  density   ρ.  Regions  of  higher  mass  densi ty  tel l  us 
where mass  is  concentrated.  The mass i tself is  a more tangible  quantity that depends both on 
the  mass  densi ty  and  on  the  size  of  a  specific  piece  of  material .  Simi larly,  probabil i ty 
density  tells  us  regions  in  which  a  particle  is  more  l ikely,  or  less  l ikely,  to  be  found.  The 
probabil i ty  is  a  definite  number  between  0  and  1.  Probabil i ty  depends  both  on  the 
probabil i ty density and on the size of the specific region we are  considering.

40.4. (a) The probability density is maximum at x ± 2 mm.
(b) We cannot tell where the wave function is most positive; it could be at either x = 2 mm or x = −2 mm. It
will be positive at one and negative at the other.

40.6. Particle 1 because it has a less definite Δx and therefore a more definite Δp = Δmv.

Problems and Exercises

40.4. Model: The probability that the outcome will be A or B is the sum of PA and PB. The expected value is
your best possible prediction of the outcome of an experiment.
Solve: For each deck, there are 12 picture cards (4 Jacks, 4 Queens, and 4 Kings). Because the probability of
drawing one card out of 52 cards is 1/52, the probability of drawing a card that is a picture card is 12/52 = 
23.1%.
The number of picture cards that will be drawn is 0.231 × 1000 = 231.

 



40.7. Visualize: Combine Equations 40.10 and 40.11 to show that N  is proportional to 2( ) .A x xδ| |  
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We are given 1 6000,N =  1 0 10 mm,xδ = .  1( ) 200 V m,A x = /  2 3000,N =  and 2 0 20 mm.xδ = .  We are not given 

Ntot  but it cancels anyway. 

Solve: Solve the above equation for 2( ) .A x  

1 2 2
2 1

2 1 1
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Assess: The answer is half of the wave amplitude at the other strip, which seems reasonable. 
 



40.8. Solve: The probability that a photon arrives at this 0.10-mm-wide strip is 

Prob(in 0.10 mm at x) ( )101.0 10
N P x xδ= =
×

 

where N is the number of photons detected in the strip and the total number of photons is 1.0 × 1010. We have 

( )( )( )10 1 31.0 10 20 m 0.10 10  mN − −= × ×  ⇒  N = 2.0×107 

 



40.11. Model: The probability of finding a particle at position x is determined by ( ) 2
.xψ  

Solve: (a) The probability of detecting an electron is Prob(in δx at x) ( ) 2
.x xψ δ=  At x = 0 mm, the number of 

electrons landing is calculated as follows: 

( ) ( )( )( )2 1 61
36 0 mm  mm 0.010 mm 1.0 10 3333 

1.0 10
N x Nψ δ −= ⇒ = × =
×

 

(b) Likewise, the number of electrons landing at x = 2.0 mm is 

( ) ( )( )( )2 1 6
total2.0 mm 0.111 mm 0.010 mm 1.0 10 1111N xNψ δ −= = × =  

 



40.10. Solve: ( ) 2
x xψ δ  is a probability, which is dimensionless. The units of xδ are m, so the units of 

( ) 2
xψ  are m−1 and thus the units of ψ are m−1/2. 

 



40.14. Model: The probability of finding a particle is determined by the probability density ( ) ( ) 2
P x xψ= . 

Solve: (a) The normalization condition for a wave function: ( ) 2
x dxψ

∞

−∞

=∫  area under the curve = 1. In the 

present case, the area under the ( ) 2
xψ -versus-x graph is 2  nm.a  Hence, 11

2 nm .a −=  
(b) Each point on the ψ (x) graph is the square root of the corresponding point on the |ψ(x)|2 graph. Where the 
|ψ (x)|2 graph has dropped to 1/2 its maximum value at x = 1 nm, the ψ (x) graph will have dropped only to 
1/ 2 0.707=  of its maximum value. Thus the graph shape is convex upward. Since a = 1

2  nm–1, the peak value 

of ψ (x) is 1/ 21/ 2  nma −=  = 0.707 nm–1/2. The graph is shown below. The negative of this graph, curving 
downward, would also be an acceptable wave function. 

 
(c) The probability of the electron being located in the interval 1.0 ≤ x ≤ 2.0 nm is 

1

Prob(1.0 nm 2.0 nm) area under the curve between 1.0 nm and 2.0 nm
1 (0.50 nm )(1.0 nm)(2.0 nm – 1.0 nm) 0.125
2 2 4

x
a −

≤ ≤ =

⎛ ⎞= = =⎜ ⎟
⎝ ⎠

 



40.17. Model: The probability of finding the particle is determined by the probability density 

( ) ( ) 2
.P x xψ=  

Solve: (a) According to the normalization condition, ( ) 2
1.x dxψ

∞

−∞

=∫  From the given ψ (x)-versus-x graph, we 

first generate a ( ) 2
xψ -versus-x graph and then find the area under the curve.  

 

The area under the ( ) 2
xψ -versus-x graph is 

( )
4.0 mm

2 2 1/ 2

4.0 mm

18.0 mm 1 0.354 mm
8.0 mm

c dx c c −

−

= = ⇒ = =∫  

(b) The graph is shown above. 
(c) The probability is 

Prob(1.0 mm ≤ x ≤ 1.0 mm) = ( ) ( )2 11area 2.0 mm mm 2.0 mm
8.0

c −⎛ ⎞= = ⎜ ⎟
⎝ ⎠

 = 0.25 

 



40.19. Model: A radio-frequency pulse is an electromagnetic wave packet, hence it must satisfy the relationship 
Δ f Δ t  ≈ 1. 
Solve: The waves that must be superimposed to create the pulse of smallest duration span the frequency 
range 
f – Δ f /2  ≤ f ≤ f + Δ f /2 . Because Δ f  = 120 MHz – 80 MHz = 40 MHz, f = 100 MHz. Using Equation 40.20, 

81 1 2.5 10  s  25 ns
40 MHz

t
f

−Δ ≈ = = × =
Δ

 

Thus, a radio wave centered at 100 MHz and having a frequency span 80 MHz to 120 MHz can be used to create 
a wave of duration 25 ns. 
 



40.20. Model: The beating of two waves of different frequencies produces a series of wave packets. 
Solve: The beat frequency is fbeat = f1 – f2 = 502 Hz – 498 Hz = 4 Hz. The period of one beat is 

beat
beat

1 1 0.25 s
4 Hz

T
f

= = =  

During 0.25 s, the wave moves forward ∆ x  = vsoundTbeat = (340 m/s)(0.25 s) = 85 m. Thus the length of each wave 
packet is 85 m. 
 



40.21. Model: A laser pulse is an electromagnetic wave packet, hence it must satisfy the relationship Δ f Δt ≈ 
1. 
Solve: Because c = λ f , the frequency and period are 

8
14

6

3.0 10  m/s 2.0 10  Hz
1.5 10  m

f −

×
= = × ⇒

×
15

14

1 1 5.0 10  s
2.0 10  Hz

T
f

−= = = ×
×

 

Since Δ f  = 2.0 GHz, the minimum pulse duration is 

10
9

1 1 5.0 10  s
2.0 10  Hz

t
f

−Δ ≈ = = ×
Δ ×

 

The number of oscillations in this laser pulse is 
10 10

5
15

5.0 10  s 5.0 10  s 1.0 10  oscillations
5.0 10  sT

− −

−

× ×
= = ×

×
 

 



40.22. Visualize: The uncertainty in velocity is 5 5 43 58 10  m s 3 48 10  m s 1 0 10  m sxvΔ = . × / − . × / = . × / . 
We recall (or look up) the mass of an electron: 31

e 9 11 10  kg.m −= . ×  
Solve: Solve for the position uncertainty xΔ  in Equation 40.28. 

34
8

31 4
e

6 63 10  J s 3 6 10  m 36 nm
2 2 2(9 11 10  kg)(1 0 10  m s)x x

h hx
p m v

−
−

−

. × ⋅
Δ ≈ = = = . × =

Δ Δ . × . × /
 

Assess: The answer is a few dozen atomic diameters. 
 



40.24. Model: Electrons are subject to the Heisenberg uncertainty principle. 
Solve: Uncertainty in our knowledge of the position of the electron as it passes through the hole is Δ x  = 10 
μm. With a finite Δx , the uncertainty Δpx cannot be zero. Using the uncertainty principle, 

( )( )
34

31 6

6.63 10  J s 36 m/s
2 2 2 9.11 10  kg 10 10  mx x x

h hp m v v
x m x

−

− −

×
Δ = Δ = ⇒ Δ = = =

Δ Δ × ×
 

Because the average velocity is zero, the best we can say is that the electron’s velocity is somewhere in the 
interval 
−18 m/s ≤ vx ≤ 18 m/s. 
 



40.25. Model: Protons are subject to the Heisenberg uncertainty principle. 
Solve: We know the proton is somewhere within the nucleus, so the uncertainty in our knowledge of its 
position is at most Δx  = L = 4.0 fm. With a finite Δ x , the uncertainty Δpx is given by the uncertainty principle: 

( )( )
34

7
27 15

/2 6.63 10  J s 5.0 10  m/s
2 2 1.67 10  kg 4.0 10  mx x x

h hp m v v
x mL

−

− −

×
Δ = Δ = ⇒ Δ = = = ×

Δ × ×
 

Because the average velocity is zero, the best we can say is that the proton’s velocity is somewhere in the range −2.5 
× 
107 m/s  to 2.5 × 107 m/s. Thus the smallest range of speeds is 0 to 2.5 × 107 m/s. 
 



40.29. Model: The radio-wave pulses are wave packets, so each packet satisfies the relationship Δ f Δt ≈ 1. 
Visualize: Please refer to Figure P40.29. 
Solve: Because the frequency bandwidth is Δ f  = 200 kHz, the shortest possible pulse width is 

61 1 5 10  s
200 kHz

t
f

−Δ ≈ = = ×
Δ

 

This means the time period of the pulse train is 
T = 2Δt = 2(5 × 10−6 s) = 10 × 10−6 s 

So, the frequency of the pulse train is 51 1.0 10  Hz.f T= = ×  That is, the maximum transmission rate is 
51.0 10  pulses/s.×  

 



40.30. Model: The probability of finding a particle at position x is determined by ( ) 2
.xψ  

Visualize:  

 
Solve: (a) Electrons are most likely to arrive at the points of maximum intensity. No electrons will arrive at 
points of zero intensity. 
(b) The graph of ( ) 2

xψ  looks just like the classical intensity pattern of single-slit diffraction. 

(c) The wave function ψ (x) is square root of ( ) 2
.xψ  It oscillates because it alternates between the positive and 

negative roots. 
 



40.31. Model: The probability of finding a particle at position x is determined by ( ) ( ) 2
.P x xψ=  

Visualize:  

 
Solve: (a) Since the electrons are uniformly distributed over the interval 0 ≤ x ≤ 2 cm, the probability density 

( ) ( ) 2
P x xψ=  is constant over this interval. P(x) = 0 outside this interval because no electrons are detected. 

Thus ( ) 2
xψ  is a square function, as shown in the figure. To be normalized, the area under the probability curves 

must be 1. Hence, the peak value of ( ) 2
xψ  must be 0.5 cm−1. 

(b) The interval is δx = 0.02 cm. The probability is 

Prob(in δx at x = 0.80 cm) = ( ) 2
0.80 cmx xψ δ= = (0.5 cm−1)(0.02 cm) = 0.01 = 1% 

(c) From Equation 39.7, the number of electrons is 
N(in δx at x = 0.80 cm) = NtotalProb(in δx at x = 0.80 cm) = 106  × (0.01) = 104 

(d) The probability density is P(x = 0.80 cm) = ( ) 2
0.80 cmxψ =  = 0.5 cm−1. 

 



40.33. Model: The probability of finding a particle at position x is determined by ( ) ( ) 2
.P x xψ=  

Visualize:  

 

Solve: (a) Yes, because the area under the ( ) 2
xψ  curve is equal to 1. 

(b) There are two things to consider when drawing ψ (x). First ψ (x) is an oscillatory function that changes sign every 
time it reaches zero. Second, ψ (x) must have the right shape. Each point on the ψ (x) curve is the square root of the 
corresponding point on the ( ) 2

xψ  curve. The values ( ) 2 11 cmxψ −=  and ( ) 2 10 cmxψ −=  clearly give 
1/2( ) 1 cmxψ −= ± and 1/2( ) 0 cm ,xψ −=  respectively. But consider 0.5 cm,x =  where ( ) 2 10.5 cm .xψ −=  Because 

0.5 0.707= , ψ (x = 0.5 cm) = 0.707 cm−1/2. This tells us that the ψ (x) curve is not linear but bows upward over the 
interval 0 ≤ x ≤ 1 cm. Thus, ψ (x) has the shape shown in the above figure. 
(c) δx  = 0.0010 cm is a very small interval, so we can use Prob(in δx  at x) = ( ) 2

.x xψ δ  The values of ( ) 2
xψ  

can be read from Figure P40.33. Thus, 

Prob(in δx  at x = 0.0 cm) = ( ) ( )( )2 10.0 cm 0.0 cm 0.0010 cm 0.000x xψ δ −= = =  

Prob(in δx  at x = 0.5 cm) = ( ) ( )( )2 10.5 cm 0.5 cm 0.0010 cm 0.0005x xψ δ −= = =  

Prob(in δx  at x = 0.999 cm) = ( ) ( )( )2 11.0 cm 1.0 cm 0.0010 cm 0.0010x xψ δ −= = =  

(d) The number of electrons in the interval −0.3 cm ≤ x ≤ 0.3 cm is 
N(in −0.3 cm ≤ x 0.3 cm) = Ntotal × Prob(in −0.3 cm ≤ x ≤ 0.3 cm) 

The probability is the area under the probability density curve. We have 

Prob(in −0.3 cm ≤ x ≤ 0.3 cm) = ( )
0.3 cm

2

0.3 cm

x dxψ
−
∫ = ( )11

22 0.3 cm 0.3 cm 0.090−× × × =  

Thus, the number of electrons expected to land in the interval −0.3 cm ≤ x ≤ 0.3 cm is 10,000 × 0.090 = 900. 
 



40.35. Model: The probability of finding a particle at position x is determined by the probability density 

( )P x =  ( ) 2
xψ . 

Solve: (a) The wave function is a straight line passing through the origin such that it is +c at x = +4 mm and –c at x 
= –4 mm. That is, the wave function is 

ψ x( )  = cx/4, where x is in mm and c is in 1 2mm .−  

Note that the units of c must be that of ψ (x). Thus 

( ) ( ) ( )
44 4 2 3

2 2 2 2 2 2

4 0 0

2 816 2 16
16 3 3
c xx dx c x dx c x dx cψ

∞

−∞ −

⎡ ⎤
= = = =⎢ ⎥

⎣ ⎦
∫ ∫ ∫  

Because ( ) 2 2 1/ 28 31,  1  mm
3 8

x dx c cψ
∞

−

−∞

= = ⇒ =∫  

(b) From part (a), we have 

( ) ( )
2

2 2 2 2 1316 3 128 mm
128

xx c x xψ −= = =  

A ( ) 2
xψ -versus-x graph is shown in the figure. 

 

(c) The particle is most likely to be found at the positions where ( ) 2
xψ  is a maximum. The graph above gives a 

dot picture of the first few particles. 

(d) ( )
2.02.0 mm 2.0 2 3

2

2.0 mm 0 0

3 3Prob( 2.0 mm 2.0 mm) 2 2 2 0.125
128 128 3

x xx x dx dxψ
−

⎡ ⎤⎛ ⎞− ≤ ≤ = = = =⎢ ⎥⎜ ⎟
⎝ ⎠ ⎣ ⎦

∫ ∫  

 



40.38. Model: The probability of finding a particle at position x is determined by the probability density 

( ) ( ) 2
.P x xψ=  

Solve: (a) /( ) x Lx ceψ =  for x ≤ 0 nm and /( ) x Lx ceψ −=  for x ≥ 0 mm. The probability density will thus be 

( ) 2
xψ =  2 2 /x Lc e  for x ≤ 0 mm and ( ) 2 2 2 /x Lx c eψ −=  for x ≥ 0 mm. With L = 2.0 mm, ψ and 2ψ  at various 

values of x are displayed in the table below. 
x (mm) 0 0.5 1.0 1.5 2.0 3.0 4.0 5.0 
ce−x/L c 0.78c 0.61c 0.47c 0.37c 0.22c 0.14c 0.08c 

c2e−2x/L c2 0.61c2 0.37c2 0.22c2 0.14c2 0.05c2 0.022 0.01c2 

 
(b) Normalization of the wave function requires that 

( ) ( )2 2 2 2 / 2 2 1/ 2

0
0 0

1 11 2 2 2 0.707 mm
2 2.0 mm

x L x LLx dx x dx c e dx c e c
L

ψ ψ
∞ ∞ ∞

∞− − −

−∞

⎛ ⎞ ⎡ ⎤= = = = − ⇒ = = =⎜ ⎟⎣ ⎦⎝ ⎠∫ ∫ ∫  

(c) The probability is 

Prob(−1.0 mm ≤ x ≤ 1.0 mm) ( )
1.0 mm

2

1.0 mm

x dxψ
−

= ∫  

1.0 mm
1.0 mm2 2 / 2 2 / 2 1

0 mm
0 mm

2.0 mm2 2 2 1 0.632 63.2%
2 2

x L x LLc e dx c e c e− − −−⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎡ ⎤= = − = − = =⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠∫  

(d) The region –1 mm ≤ x ≤ 1 mm is shaded on the probability density graph. 
 



40.42. Model: A pulse is a wave packet, hence it must satisfy the relation Δ f Δt ≈ 1. 
Solve: (a) The wavelength of 600 nm corresponds to a center frequency of 

8
14

0 9
0

3 10  m/s 5.0 10  Hz
600 10  m

cf
λ −

×
= = = ×

×
 

(b) The pulse duration is 6.0 fs, that is, Δt = 6.0 × 10−15 s. Because the time period of the center frequency is 
1 15

0 2.0 10  sT f − −= = × , the number of cycles in the pulse is 
15

15

6.0 10  s 3
2.0 10  s

t
T

−

−

Δ ×
= =

×
 

(c) The frequency bandwidth for a 6.0-fs-long pulse is 

14
15

1 1 1.67 10  Hz
6.0 10  s

f
t −Δ = = = ×

Δ ×
 

This bandwidth is centered on f0 = 5.00 × 1014 Hz, so the necessary range of frequencies from f0 – 1
2 ∆f to f0 + 

1
2 ∆f is from 4.17 × 1014 Hz to 5.83 × 1014 Hz. 

(d) The pulse travels at speed c, so the length is ∆x  = c∆t = (3.0 × 108 m/s)(6.0 × 10–15 s) = 1.8 × 10–6 m = 1.8 
μm. This is 3λ, in agreement with the finding that there are 3 cycles in the pulse. 
(e) The graph has three oscillations spanning 1.8 µm = 3λ. 

 

 



40.44. Model: A dust speck is a particle and is thus subject to the Heisenberg uncertainty principle. 
Solve: The uncertainty in our knowledge of the position of the dust speck is 10 m.x μΔ =  The uncertainty in 
the dust speck’s momentum is 

( )
34

29
6

/ 2 6.63 10  J s 3.32 10  kg m/s
2 10 10  mx

hp
x

−
−

−

×
Δ = = = ×

Δ ×
 

Equivalently, the uncertainty in the dust particle velocity is 
29

13
16

3.32 10  kg m/s 3.32 10  m/s
1.0 10  kg

x
x

pv
m

−
−

−

Δ ×
Δ = = = ×

×
 

The average velocity is 0 m/s, so the range of possible velocities is –1.66 × 10–13 m/s to +1.66 × 10–13 m/s. The 
particle could have a top speed of up to 1.66 × 10–13 m/s. The maximum kinetic energy the speck has is 

( )( )22 16 13

42

1 1 1.0 10  kg 1.66 10  m/s
2 2
1.4 10  J

K mv − −

−

= = × ×

= ×

 

To get out of the hole, the particle would have to acquire potential energy 

( )( )( )16 2 6

22

1.0 10  kg 9.8 m/s 1.0 10  m

9.8 10  J

U mgh − −

−

= = × ×

= ×
 

The energy gain needed to get out of the hole is much larger than the available kinetic energy. The particle does 
not have anywhere near enough kinetic energy that it could, by any process, transform into potential energy and 
escape. Using K = mgh, the deepest hole from which the dust speck could have a good chance of escaping is 

( )( )
42

27
16 2

1.4 10  J 1.4 10  m
1.0 10  kg 9.8 m/s

Kh
mg

−
−

−

×
= = = ×

×
 

Assess: This is not a very deep hole. 
 



40.47. Solve: (a) For a photon, E = hf which means ΔE = hΔ f . Assuming the photon is a wave packet, the 
relationship that is applicable to a wave packet Δ f Δt ≈ 1 becomes 

1E t
h
Δ⎛ ⎞Δ ≈ ⇒⎜ ⎟

⎝ ⎠
ΔEΔt ≈ h 

(b) The energy of a photon cannot be exactly known. The uncertainty in our knowledge of a  photon’s energy 
depends on the length of time Δ t  that is available to measure it. 
(c) The uncertainty in the energy is 

34
26 7

9

6.63 10  J s 6.63 10  J 4.14 10  eV
10 10  s

hE
t

−
− −

−

×
Δ ≅ ≅ = × = ×

Δ ×
 

(d) The energy of the photon is 

( )( )34 8
19

9 19

6.63 10  J s 3.0 10  m/s 1 eV3.978 10  J 2.49 eV
500 10  m 1.6 10  J

hcE
λ

−
−

− −

× ×
= = = × × =

× ×
 

7
74.14 10  eV 1.7 10

2.49 eV
E

E

−
−Δ ×

⇒ = = ×  

 




