
33.5. The magnetic field is into the page on the left of the wire and it is out of the page on the right of the wire.  
Grab the wire with your right hand in such a way that your fingers point out of the page to the right of the wire.  
Since the thumb now points down, the current in the wire is down. 
 



33.6. (a) The force on a charge moving in a magnetic field is 

on qF qv B= × =  (qvBsinα, direction of right-hand rule) 

A positive charge moving to the right with B  into the page gives a force that is up. 
(b) The direction of the force on a negative charge is opposite the direction determined by the right-hand rule.  A 
negative charge moving up with B  out of the page gives a force to the left. 
 



33.7. (a) The force on a charge moving in a magnetic field is 

on qF qv B= × = (qvBsinα, direction of right-hand rule) 

A positive charge moving to the right with B  down gives a force into the page. 
(b) The direction of the force on a negative charge is opposite the direction determined by the right-hand rule.  
Any charge moving parallel to the field has no force and no deflection. 
 



33.8. (a) The force on a charge moving in a magnetic field is 

on qF qv B= × = (qvBsinα, direction of right-hand rule) 

The magnetic field must be in a plane perpendicular to both the v  and F  vectors.  Using the right-hand rule for 
a positive charge moving to the right, the B  field must be out of the page. 
(b) The direction of the force on a negative charge is opposite the direction determined by the right-hand rule.  
The force F  on the negative charge is into the page. Since the velocity is to the right, the magnetic field B  must 
be up. 
 



33.13. The magnet is repelled. The current loop produces a magnetic dipole with the north pole on the left and 
the south pole on the right.  The approaching south pole of the magnet is repelled by the south pole of the current 
loop. 
 



33.14. Model: Assume the wires are infinitely long. 
Visualize: Please refer to Figure EX33.14. 
Solve: The magnetic field strength at point a is 
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At points b and c, 
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33.16. Solve: (a) The magnetic dipole moment of the superconducting ring is 

( ) ( ) ( )22 3 4 21.0 10  m 100 A 3.1 10  A mR Iμ π π − −= = × = ×  

(b) From Example 33.5, the on-axis magnetic field of the superconducting ring is 
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33.19. Visualize: Please refer to Figure EX33.19. 
Solve: Because B  is in the same direction as the integration path s  from i to f, the dot product of B  and d s  
is simply Bds. Hence the line integral 

( ) ( )( ) ( ) ( )
f f f
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33.20. Visualize: Please refer to Figure EX33.20. 
Solve: The line integral of B  between points i and f is 

f

i

B d s⋅∫  

Because B  is perpendicular to the integration path from i to f, the dot product is zero at all points and the line 
integral is zero. 
 



33.23. Model: The magnetic field is that of a current flowing into the plane of the paper. The current-
carrying wire is very long. 
Visualize: Please refer to Figure EX33.23. 
Solve: Divide the line integral into three parts: 

f
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B d s B d s B d s B d s⋅ = ⋅ + ⋅ + ⋅∫ ∫∫ ∫  

The magnetic field of the current-carrying wire is tangent to clockwise circles around the wire. B  is everywhere 
perpendicular to the left line and to the right line, thus the first and third parts of the line integral are zero. Along 
the semicircle, B  is tangent to the path and has the same magnitude B = μ0I/2πd at every point. Thus 
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where L = πd is the length of the semicircle, which is half the circumference of a circle of radius d. 
 



33.24. Model: Assume that the solenoid is an ideal solenoid. 
Solve: We can use Equation 33.16 to find the current that will generate a 3.0 mT field inside the solenoid: 
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Assess: This is a reasonable current to pass through a good conducting wire of diameter 1 mm. 
 



33.27. Model: A magnetic field exerts a magnetic force on a moving charge. 
Visualize: Please refer to Figure EX33.27. 
Solve: (a) The force is 

( )( ) ( )19 7 13
on q

ˆˆ ˆ1.60 10  C 1.0 10   m/s 0.50  T 8.0 10  NF qv B j i k− −= × = − × − × × = − ×  

(b) The force is 

( )( )( ) ( ) ( )19 7 13
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33.36. Model: Two parallel wires carrying currents in opposite directions exert repulsive magnetic forces on 
each other. Two parallel wires carrying currents in the same direction exert attractive magnetic forces on each 
other. 
Visualize: Please refer to Figure EX33.36. 
Solve: The magnitudes of the various forces between the parallel wires are 
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Now we can find the net force each wire exerts on the other as follows: 
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33.39. Solve: From Equation 33.28, the torque on the loop exerted by the magnetic field is 

( )( )( ) 4sin sin 0.500 A 0.050 m 0.050 m 1.2 T sin30 7.5 10  N mB B IABτ μ τ μ θ θ −= × ⇒ = = = × ° = ×  

 



33.45. Model: Assume that the superconducting niobium wire is very long. 
Solve: The magnetic field of a long wire carrying current I is 

0
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=  

We’re interested in the magnetic field of the current right at the surface of the wire, where d = 1.5 mm. The 
maximum field is 0.10 T, so the maximum current is 
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Assess: The current density in this superconducting wire is of the order of 1 × 108 A/m2. This is a typical value 
for conventional superconducting materials. 
 



33.46. Model: Use the Biot-Savart law for a current carrying segment. 
Visualize: Please refer to Figure P33.46. 
Solve: (a) The Biot-Savart law (Equation 33.6) for the magnetic field of a current segment sΔ  is 
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where the unit vector r̂  points from current segment Δs to the point, a distance r away, at which we want to 
evaluate the field. For the two linear segments of the wire, sΔ  is in the same direction as ˆ,r  so ˆ   0.s rΔ × =  For 
the curved segment, sΔ  and r̂  are always perpendicular, so ˆ  .s r sΔ × = Δ  Thus 

0
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Now we are ready to sum the magnetic field of all the segments at point P. For all segments on the arc, the 
distance to point P is r = R. The superposition of the fields is 
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where L = Rθ is the length of the arc. 
(b) Substituting θ = 2π in the above expression, 
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This is Equation 33.7, which is the magnetic field at the center of a 1-turn coil. 
 



33.48. Model: Assume that the wire is infinitely long. 
Visualize: Please refer to Figure P33.48. The wire, looped as it is, consists of a circular part and a linear part. 
Solve: Using Equation 33.7 and Example 33.3, the magnetic field at P is 
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33.54. Model: The toroid may be viewed as a solenoid that has been bent into a circle. 
Visualize: Please refer to Figure P33.54. 
Solve: (a) A long solenoid has a uniform magnetic field inside and it is roughly parallel to the axis. If we bend 
the solenoid to make it circular, we will have circular magnetic field lines around the inside of the toroid. 
However, as explained in part (c) the field is not uniform. 
(b)  

 
A top view of the toroid is shown. Current is into the page for the inside windings and out of the page for the 
outside windings. The closed Ampere’s path of integration thus contains a current NI where I is the current 
flowing through the wire and N is the number of turns. Applied to the closed line path, the Ampere’s law is 

0 through 0B d s I NIμ μ⋅ = =ú  

Because B  and d s  are along the same direction and B  is the same along the line integral, the above simplifies 
to 

0
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μπ μ
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(c) The magnetic field for a toroid depends inversely on r which is the distance from the center of the toroid. As r 
increases from the inside of the toroid to the outside, Btoroid decreases. Thus the field is not uniform. 
 



33.55. Model: The magnetic field is that of the current which is distributed uniformly in the hollow wire. 
Visualize:  

 
Ampere’s integration paths are shown in the figure for the regions 0 m < r < R1, R1 < r < R2, and R2 < r. 
Solve: For the region 0 m < r < R1, 0 throughB d s Iμ⋅ =ú . Because the current inside the integration path is zero, 

B = 0 T. To find Ithrough in the region R1 < r < R2, we multiply the current density by the area inside the integration 
path that carries the current. Thus, 
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where the current density is the first term. Because the magnetic field has the same magnitude at every point on 
the circular path of integration, Ampere’s law simplifies to 
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For the region R2 < r, Ithrough is simply I because the loop encompasses the entire current. Thus, 

02B d s B ds B r Iπ μ⋅ = = =∫ú ⇒ 0
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Assess: The results obtained for the regions r > R2 and R1 < r < R2 yield the same result at r = R2. Also note 
that a hollow wire and a regular wire have the same magnetic field outside the wire. 
 



33.58. Visualize: Please refer to Figure P33.58. 
Solve: The electric field is 

( )200 V , down 20,000 V/m, down
1 cm

E ⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

The force this field exerts on the electron is ( )15
elec 3.2 10  N, upF qE eE −= = − = × . The electron will pass through 

without deflection if the magnetic field also exerts a force on the electron such that net elec mag 0 NF F F= + = . That is, 

magF =  15 15(3.2 10  N, 3.2 10  N, down).− −× ×  In this case, the electric and magnetic forces cancel each other. For a 

negative charge with v  to the right to have magF  down requires, from the right-hand rule, that B  point into the 
page. The magnitude of the magnetic force on a moving charge is Fmag = qvB, so the needed field strength is 

( )( )
15
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19 7

3.2 10  N 2.0 10  T  2.0 mT
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Thus, the required magnetic field is B  = (2.0 mT, into page). 
 



33.60. Model: Charged particles moving perpendicular to a uniform magnetic field undergo uniform circular 
motion at a constant speed. 
Solve: (a) From Equation 33.20, the magnetic field is 

( )( )9 31

19

2 2.4 10  Hz 9.11 10  kg2 0.086 T 86 mT
1.6 10  C

fmB
e

ππ −

−

× ×
= = = =
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(b) The maximum kinetic energy is for an orbit with radius 1.25 cm. 

( ) ( ) ( )( ) 222 31 9 141 1 1
2 2 22 9.11 10  kg 2 0.0125 m 2.4 10  Hz 1.62 10  JK mv m rfπ π− −⎡ ⎤= = = × × = ×⎣ ⎦  

 



33.64. Model: Charged particles moving perpendicular to a uniform magnetic field undergo circular motion 
at constant speed. 
Visualize: Please refer to Figure P33.64. 
Solve: The potential difference causes an ion of mass m to accelerate from rest to a speed v. Upon entering the 
magnetic field, the ion follows a circular trajectory with cyclotron radius r = mv/eB. To be detected, an ion’s 
trajectory must have radius d = 2r = 8 cm. This means the ion needs the speed 

2
eBr eBdv
m m

= =  

This speed was acquired by accelerating from potential V to potential 0. We can use the conservation of energy 
equation to find the voltage that will accelerate the ion: 

K1 + U1 = K2 + U2 ⇒ 21
20 J 0 Je V mv+ Δ = +  ⇒

2

2
mvV

e
Δ =  

Using the above expression for v, the voltage that causes an ion to be detected is 
22 2 2

2 2 2 8
mv m eBd eB dV

e e m m
⎛ ⎞Δ = = =⎜ ⎟
⎝ ⎠

 

An ion’s mass is the sum of the masses of the two atoms minus the mass of the missing electron. For example, 
the mass of 2N+  is 

m = mN + mN – melec = 2(14.0031 u)(1.661 × 10−27 kg/u) – 9.11 × 10−31 kg = 4.65174 × 10−26 kg 
Note that we’re given the atomic masses very accurately in Exercise 28. We need to retain this accuracy to tell 
the difference between 2N+  and CO+. The voltage for +

2N  is 

( )( ) ( )
( )

2 219
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Ion Mass (kg) Accelerating voltage (V) 

2N+  4.65174 × 10−26 110.07 

2O+  5.31341 × 10−26 96.36 
CO+ 4.64986 × 10−26 110.11 

Assess: The difference between 2N+  and CO+ is not large but is easily detectable. 

 



33.66. Model: The loop will not rotate about the axle if the torque due to the magnetic force on the loop 
balances the torque of the weight. 
Visualize: Please refer to Figure P33.66. 
Solve: The rotational equilibrium condition net 0 N mτΣ =  is about the axle and means that the torque from the 
weight is equal and opposite to the torque from the magnetic force. We have 

( ) ( ) ( )
( )( )( )
( )( )( )( )
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3 2

50 10  kg 0.025 m sin90

50 10  kg 9.8 m/s 0.025 m
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−

× = ° =

×
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Assess: The current in the loop must be clockwise for the two torques to be equal. 
 



33.67. Model: A magnetic field exerts a magnetic force on a length of current-carrying wire. We ignore 
gravitational effects, and focus on the B effects. 
Visualize: Please refer to Figure P33.67. The figure shows a wire in a magnetic field that is directed out of the 
page. The magnetic force on the wire is therefore to the right and will stretch the springs. 
Solve: In static equilibrium, the sum of the forces on the wire is zero: 

FB + Fsp 1 + Fsp 2 = 0 N ⇒ ILB + (−kΔx) + (−kΔx) ⇒ ( )( )
( )( )

2 10 N/m 0.01 m2  2.0 A
0.20 m 0.5 T

k xI
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Δ

= = =  

 



33.70. Model: The wire will float in the magnetic field if the magnetic force on the wire points upward and 
has a magnitude mg, allowing it to balance the downward gravitational force. 
Visualize:  

 
Solve: Each lower wire exerts a repulsive force on the upper wire because the currents are in opposite 
directions. The currents are of equal magnitude and the distances are equal, so 1 2.F F=  Consider segments of the 
wires of length L. Then the forces are 

2
0

1 2 2
LIF F
d

μ
π

= =  

The horizontal components of these two forces cancel, so the net magnetic force is upward and of magnitude 
2

0
mag 1

cos302 cos30 LIF F
d

μ
π

°
= ° =  

In equilibrium, this force must exactly balance the downward weight of the wire. The wire’s linear mass density 
is μ = 0.050 kg/m, so the mass of this segment is m = μL and its weight is w = mg = μLg. Equating these gives 

2
0 cos30LI Lg

d
μ μ

π
°
= ⇒
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πμ π
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33.76. Model: A magnetic field exerts a force on a segment of current. 
Visualize: The figure shows the forces on two small segments of current, one in which the current enters the 
plane of the page and one in which the current leaves the plane of the page. 

 
Solve: (a) Consider a small segment of the loop of length Δs. The magnetic force on this segment is 
perpendicular both to the current and to the magnetic field. The figure shows two segments on opposite sides of 
the loop. The horizontal components of the forces cancel but the vertical components combine to give a force 
toward the bar magnet. The net force is the sum of the vertical components of the force on all segments around 
the loop. For a segment of length Δs, the magnetic force is F = IBΔs and the vertical component is Fy = 
(IBΔs)sinθ. Thus the net force on the current loop is 

net ( )sin sinyF F IB s IB sθ θ= = Δ = Δ∑ ∑ ∑  

We could take sinθ outside the summation because θ is the same for all segments. The sum of all the Δs is simply 
the circumference 2πR of the loop, so 

Fnet = 2πRIBsinθ 
(b) The net force is 

Fnet = 2π (0.020 m)(sin 20°)(0.50 A)(200 × 10−3 T) = 4.3 × 10−3 N 
 


