Physics 171 Introductory Physics: Mechanics and Relativity Spring 2011 — Professor Abazajian

Updated January 23, 2011

Course topics: Kinematics, Newton's laws, energy and work, special relativity, rotational kinematics, angular momentum, gravity, fluids, and gases. This course is designed for physics majors and those desiring a rigorous preparation in the physical sciences. Knowledge of basic calculus will be assumed.

Prerequisites: Math 140 (Calculus I) and a high school physics class, or permission of the department.

Lectures: Mondays, Tuesdays, Thursdays, and Fridays from 10:00–10:50, in room 1204 of the Physics Building. See the Course Schedule for the planned topic(s) for each lecture. The schedule may shift around by a day or so if some topics take more or less time than expected.

Required textbook: "Physics for Scientists and Engineers" by Tipler and Mosca, sixth edition, volume 1, published by W. H. Freeman and Company as an E-Book, available online via WebAssign for \$25. Instructions for using WebAssign and ELMS will be given in class. Students can purchase a printed version (optional) for an extra \$25 through the e-Book site. With the e-book, you should subscribe to the DynamicBook Set number 13492905 in order to see my edits and comments in the e-book. You do not need to bring the book to class. Most lectures are associated with 1 to 4 sections from the book as indicated on the Course Schedule, and *you should read those prior to the lecture*.

Homework will be assigned about once per week and must be turned in at the beginning of class on the specified date (or earlier). Don't wait until the last day to get started! Please do all of the homework and turn it in on time, unless you have a valid excuse (i.e. illness, a religious observance, or some other compelling reason). If you do not have a valid excuse, you can still turn in the homework up to 24 hours late for half credit; after that, no credit will be given. As an exception to the 24-hour cutoff, if the homework was due on a Friday, then it will be accepted in class on the following Monday for half credit. (Homework due on Tuesday will be accepted late only up to Wednesday morning, not Thursday.)

If you are unable to finish the complete homework assignment on time, then you may turn in a partial set of answers on time for full credit, and then turn in the remaining answers late for half credit. However, this practice is discouraged since it complicates the grading and bookkeeping. If you must turn in additional answers late, please write "Additional answers – turned in late" at the top of your page to help us keep things straight.

Exams: There will be three **exams** during the semester plus a final exam. The exams will be given in class, on paper, and will be closed-book. Any needed physical constants or data will be provided. You will need a calculator with standard trigonometry functions, etc. Exams must be taken on the scheduled days unless you have a valid excuse. If you know in advance that you will have to miss an exam, please inform me as soon as possible.

Up-to-date course information and your scores on assignments will be available on the ELMS (Blackboard) system. If you go to http://elms.umd.edu and log in with your username (which is your campus "Directory ID") and password, you should see the course listed in the "My Courses" panel.

Course grade:

40% Homework

12% Each exam during the semester

24% Final exam

How to do well in this course:

Do your readings *before* the lecture on the material. Come to the lectures. Do all the homework. Ask for help (your professor, TA, or a classmate) whenever there is something you don't understand. *Utilize office hours!* The professor and TA are here to help with the material, not make it harder. Review your notes and past homework assignments before each exam.

Contact Information:

Prof. Kevork Abazajian, 4101 Physics Building, 301-405-6009, kev@umd.edu
Usual office hours: Mondays 2:00-3:00pm and Wednesdays 2:00-3:00pm in room 4101 TA/Grader: TBA, undergraduate TA

*** NOTE: Office hours are subject to change - watch for announcements

If you are unable to come during regular office hours, please contact us by email or phone to ask a question and/or arrange a time to meet.

Honor Code:

The University of Maryland, College Park has a nationally recognized Code of Academic Integrity, administered by the Student Honor Council. This Code sets standards for academic integrity at Maryland for all undergraduate and graduate students. As a student you are responsible for upholding these standards for this course. It is very important for you to be aware of the consequences of cheating, fabrication, facilitation, and plagiarism. For more information on the Code of Academic Integrity or the Student Honor Council, please visit http://www.studenthonorcouncil.umd.edu/whatis.html.

Students with disabilities:

Accommodations will be provided to enable students with disabilities to participate fully in the course. Please discuss any needs with your instructor at the beginning of the semester so that appropriate arrangements can be made.

Weather and emergency closures:

If the University is closed due to weather or some emergency situation on a day when homework is due, then that homework must be turned in at the beginning of the next class when the University is open. If the University is closed on the scheduled date of an exam, then the exam will be given during the next class period when the University is open. If the University is closed on any non-exam day, including a review session (the class immediately before an exam), then the exam will still be given according to the original schedule. In these or other exceptional circumstances, we will attempt to communicate with students by email.

Course Evaluations:

Your participation in the evaluation of courses through CourseEvalUM is a responsibility you hold as a student member of our academic community. (www.courseevalum.umd.edu) Your feedback is confidential and important to the improvement of teaching and learning at the University as well as to the tenure and promotion process. CourseEvalUM will be open for you to complete your evaluations for spring semester courses at the end of the semester. Follow announcements for when the evaluations are open.. By completing all of your evaluations each semester, you will have the privilege of accessing online, at Testudo, the evaluation reports for the thousands of courses for which 70% or more students submitted their evaluations.

Final Exam:

Date & Time To Be Announced

Physics 171 Course Schedule Spring 2011 — Professor Abazajian

			<u>Reading</u>
	<u>Date</u>	<u>Lecture topic(s)</u>	<u>assignment</u>
Mon	24-Jan	Course intro; Measurement and units	1-1 to 1-5
Tue	25-Jan	Vectors and coordinate systems	1-6, 1-7
Thu	27-Jan	Motion in one dimension, acceleration	2-1, 2-2, 2-3, 2-4
Fri	28-Jan	Peer Instruction	_ 1, _ 2, _ 0, _ 1
Mon	31-Jan	Motion in two and three dimensions	3-1, 3-2
Tue	1-Feb	Circular motion	3-3
Thu	3-Feb	Peer Instruction; Newton's 1st & 2nd laws	4-1, 4-2, 4-3
Fri	4-Feb	Forces	4-4, 4-5
Mon	7-Feb	Force Problems	4-6
Tue	8-Feb	Newton's 3rd law	4-7, 4-8
Thu	10-Feb	Force Problems; Peer Instruction	,
Fri	11-Feb	Friction and drag	5-1, 5-2
		o	,
Mon	14-Feb	Solving problems with curved paths	5-3
Tue	15-Feb	Time-varying forces, Center of Mass	5-4, 5-5
Thu	17-Feb	Review	
Fri	18-Feb	Exam 1	
Mon	21-Feb	Peer Instruction; Energy and work	6-1, 6-2
Tue	22-Feb	Dot products, work, and power	6-3, 6-4
Thu	24-Feb	Potential energy; Conservation of energy	7-1
Fri	25-Feb	Peer Instruction; Conservation of energy	7-2, 7-3
		,	,
Mon	28-Feb	Quantization of energy; Many Bodies	7-1, 8-1, 8-2
Tue	1-Mar	Solving problems with collisions	8-3
Thu	3-Mar	Reference frames	8-4
Fri	4-Mar	Peer Instruction; Relativity	R-1 to R-4
Mon	7-Mar	Relativity of Simultaneity tutorial	R-5
Tue	8-Mar	Relativistic momentum, energy, and particles	
Thu	10-Mar	Peer Instruction; Review	
Fri	11-Mar	Exam 2	
Mon	14-Mar	Rotational kinematics	0.1.0.2
	14-Mar 15-Mar	Moment of inertia	9-1, 9-2 9-3, 9-4
Tue Thu	17-Mar	Solving problems with torque and rotation	9-5, 9- 4 9-5
Fri	17-Mai 18-Mar	Peer Instruction; Torque	9-6
111	10-Mai	reel histraction, forque	9-0
	Spring Break: N	March 21-25	
Mon	28-Mar	The vector nature of rotation	10-1
Tue	29-Mar	Angular momentum and torque	10-2
Thu	31-Mar	Gyroscopes & Angular Momentum	10-2

Fri	1-Apr	Gyroscopes & Angular Momentum	10-3
Mon	4-Apr	Peer Instruction; Conservation of L	10-4
Tue	5-Apr	Static equilibrium	12-1 to 12-4
Thu	7-Apr	Elasticity	12-7
Fri	8-Apr	Peer Instruction	
Mon	11-Apr	Kepler's Laws and Orbital Mechanics	11-1, 11-2
Tue	12-Apr	Gravitational force and potential energy	11-2, 11-3
Thu	14-Apr	Review	11 2, 11 3
Fri	15-Apr	Exam 3	
		Peer Instruction; Gravitational fields and	
Mon	18-Apr	tides	11-4
Tue	19-Apr	Exam 3 solutions	
Thu	21-Apr	Density and pressure in fluids	13-1, 13-2
Fri	22-Apr	Buoyancy	13-3
Mon	25-Apr	Fluids in motion	13-4
Tue	26-Apr	Peer Instruction; Simple Harmonic Motion	14-1, 14-2
Thu	28-Apr	Pendulums	14-3
Fri	29-Apr	Damped, driven oscillations	14-4
Mon	2-May	Peer Instruction; Temperature	17-1
Tue	3-May	Thermometers and refrigerators	17-2
Thu	5-May	The ideal gas law	17-3
Fri	6-May	The kinetic theory of gases	17-4
Mon			
	9-May	Review - first half of the course	

Final exam **TBA**