Quiz \#7

27.March. 17
(10 points)

For each problem give all the correct answers for each in the space or box at the right. But be careful! You can lose partial credit on a problem if you include a wrong answer (but it will not affect any other problems). If none of the answers are correct, put N .

1. (5 points) The figure at the right represents a junction, which is a small piece of a complex network consisting of (idealized) batteries, bulbs, and wires. The dotted lines connect to other parts of the network. The letters A, B, and C simply indicate points on the wires. They are not devices. While the network is carrying current in a steady state, which of the following statements can you make with confidence about the points A, B, and C ?

(a) The magnitudes of the currents flowing through A and B add up to the magnitude of the current flowing through C .
(b) The magnitudes of the voltages at A and B add up to the magnitude of the voltage at C .
(c) The sum of the magnitudes of the currents at two of the points adds up to the magnitude of the current of the third (but we can't say which).
(d) The sum of the magnitudes of the voltages at two of the points adds up to the magnitude of the voltage at the third (but we can't say which).
(e) The magnitude of the currents flowing through all three points are equal.
(f) The magnitude of the voltages at all three points are equal.
(g) We can't say anything without knowing what the rest of the network looks like.
2. (3 points) Consider a single charged particle, q, that is moving through the resistor as a part of a constant steady current. On the average, the charge moves through the resistor at a constant velocity. Which of the following statements are true while the charge is
 moving through the resistor?
A. There is a net force acting on the charge.
B. The net force acting on the charge is 0 .
C. There is a non-zero electric force on the charge.
D. We can't say anything without knowing more information.

$$
R_{\mathrm{A}}=R_{\mathrm{B}}=R_{\mathrm{C}}=3 \Omega
$$

3. (2 points) In the figure at the right is shown a network with three identical (ideal) bulbs and two identical (ideal) batteries connected by resistanceless wires. Which of the bulbs is the brightest?
(1) A and C
(2) B
(3) A, B , and C are equally bright.
(4) None of them light.
(5) You can't tell without more information.

