May 1, $2017 \quad$ Physics $132 \quad$ Prof. E. F. Redish

- Theme Music: Blondie

Fade Away and Radiate ■ Cartoon: Bill Watterson

Calvin \& Hobbes

1

Outline

- Motivating the wave model

■ Exploring the water wave analogy
■ Huygens' principle

- Reflection and refraction
- The math

■ Examples

What a difference a slit makes

The big deal here is that opening an additional slit makes it darker in some places.
Noway this happens in Newston's particle model.

It's hard to picture waves in 3D

Let's build some intuition by working through a simpler example.

Waves on the surface of water
(treating the height of the surface only that moves up and down - transvers to the wave motion: the actual bits of water move in small circles)

Explore the PhET sim

Foothold wave ideas: Huygens' Model

- The critical structure for waves are the lines or surfaces of equal phase: wavefronts.
■ Each point on the surface of a wavefront acts as a point source for outgoing spherical waves (wavelets).
■ The sum of the wavelets produces a new wavefront.
- The waves are slower in a denser medium.
- The reflection principle and Snell's law follow from the assumptions of the wave model.
■ We can even make rays - sort of.

http://www.walter-fendt.de/html5/phen/refractionhuygens_en.htm

■ Huygens' principle satisfactorily explains both the reflection and refraction principles (just as Newton's particle model does).
■ In Huygens' wave model, light travels slower in dense media.

2. by the time the trailing (right) edge of the incoming wave hits the wavelet has grown this much

4. Since the red and blue triangles are similar, $\theta_{i}=\theta_{f}$

The wavelet model implies that a plane wave will reflect off a mirror according to the rule: angle of incidence $=$ angle of reflection.

The wavelet model implies that a plane wave will refract into a medium according to the Snell's law and tells us that $\mathrm{n}=\mathrm{c}$ /speed of light in the medium.
http://www.walter-fendt.de/html5/phen/refractionhuygens_en.htm http://www.phy.ntnu.edu.tw/iava/propagation/propagation.html

What is light?...Really?

- A useful mode of light is an oscillating electromagnetic wave. (Long story)
■ A ray-like example: a plane wave

$$
\vec{E}(x, y, z, t)=\vec{E}_{0} \sin (k x-\omega t)
$$

The math

■ Outgoing pulse:

$$
\begin{array}{ll}
y=\frac{f\left(r-v_{0} t\right)}{\sqrt{r}} \quad(\text { in 2D }) & \begin{array}{l}
\text { These factors } \\
\text { reduce the amplitude } \\
\text { slightly as the waves } \\
\text { go out to conserve }
\end{array} \\
y=\frac{f\left(r-v_{0} t\right)}{r} & \text { (in 3D })
\end{array}
$$

■ Outgoing sinusoidal:

$$
\begin{aligned}
& y=\frac{A \sin (k r-\omega t)}{\sqrt{r}} \\
& y=\frac{A \sin (k r-\omega t)}{r}
\end{aligned}
$$

More math

■ Consider what the wave looks like at a fixed point in space.
\square The wave from a source a distance r_{0} away looks like a sinusoidal wave with a phase shift (that depends on r_{0}).
$y(r, t)=\frac{A \cos \left(k r_{0}-\omega t\right)}{r_{0}}=\frac{A \cos \left(\omega t-k r_{0}\right)}{r_{0}}=\frac{A \cos (\omega t-\phi)}{r_{0}}$

