■ Theme Music: Duke Ellington Take the A Train
■ Cartoon: Cantu and Castellanos
Baldo
BALDO

bY GANTÚ AND GASTELLANOS

Foothold ideas:

Electric potential energy and potential

■ The potential energy between two charges is

$$
\begin{gathered}
U_{12}^{\text {elec }}=\frac{k_{C} Q_{1} Q_{2}}{r_{12}} \\
U_{12 \ldots N}^{\text {elec }}=\sum_{i<j=1}^{N} \frac{k_{C} Q_{i} Q_{j}}{r_{i j}}
\end{gathered}
$$

■ The potential energy of many charges is
$■$ The potential energy added by adding a test charge q is

$$
\Delta U_{q}^{\text {elec }}=\sum_{i=1}^{N} \frac{k_{C} q Q_{i}}{r_{i q}}=q V
$$

Some basic electrical ideas

■ Conductor - a material that permits some of its charges to move freely within it. - Implication: If the charges in a conductor are not moving, the whole conductor is as the same V. Why?
■ Insulator - a material that permits some of its charges to move a little, but not freely.
■ Battery - a device that creates and maintains a constant potential difference across its terminals.

Charging a capacitor

- What is the potential difference between the plates?
- What is the field around the plates?
■ How much charge is on each plate?

Capacitor Equations

$$
\begin{aligned}
& \Delta V=E \Delta x=E d \\
& E=4 \pi k_{C} \sigma=4 \pi k_{C} \frac{Q}{A} \Rightarrow Q=\left(\frac{A}{4 \pi k_{C}}\right) E \\
& Q=\left(\frac{A}{4 \pi k_{C} d}\right) \Delta V
\end{aligned}
$$

$$
Q=C \Delta V
$$

Energy stored in a capacitor

Conductors

■ Putting a conductor inside a capacitor eliminates the electric field inside the conductor.
■ The distance, $d^{\prime}=d-l$, used to calculate the ΔV, is only the place where there is an E field, so putting the conductor in reduces the ΔV for a given charge.

$$
C=\frac{1}{4 \pi k_{C}} \frac{A}{d^{\prime}}
$$

Consider what happens with an insulator

■ We know that charges separate even with an insulator.

- This still reduces the field inside the material, just not to 0 .
- The field reduction factor is defined to be κ (the dielectric constant).
$E_{\text {inside material }}=\frac{1}{\kappa} E_{\text {if no material were there }}$

0

Electric circuit elements

- Batteries-devices that maintain a constant electrical pressure difference across their terminals (like a water pump that raises water to a certain height).
- Resistances - devices that have significant drag and oppose current. Pressure will drop across them.

- Capacitors - devices that can maintain a separation of charge if there is a potential difference maintained across the,

- Wires - have very little resistance. We can ignore the drag in them (mostly - as long as there are other resistances present).

Foothold Idea: Local Neutrality

■ Most matter is made of of an equal balance of two kinds of charges: positive and negative.

- Since the electric force is very strong, mostly the + and - charges overlap closely and cancel each other. (Large energy in BF!)
\square Small imbalances in the cancellation leads to:
- polarization forces
- potential drop across a resistance
- observed electric forces.

Foothold ideas: Electric charges in fluids

■ Electroneutrality - Opposite charges in materials attract each other strongly. Pulling them apart to create a charge unbalance costs energy. This tends to make small volumes of fluid electrically neutral.
■ Energy-Entropy balances - When there are situations of non-uniformity, electrical forces (energy) can balance or be balanced by random thermal motion (entropy). Two important cases are:

- Debye shielding - introduced unbalanced charge
- Nernst potential - non-uniform concentrations of ions

Foothold ideas:

- Debye length - A charge imbedded $\quad \lambda_{D}=\sqrt{\frac{\kappa k_{B} T}{k_{C} q^{2} c_{0}}}$
in an ionic solution is shielded by the ions pulling up towards the charge. The amount of imbalance $\quad V(r)=\frac{k_{c} Q}{\kappa r} e^{-r / /_{D}}$ is determined by a balance of the thermal fluctuation energy against the repulsive electrostatic energy arising from the imbalance.
$\begin{aligned} & \text { - Nernst potential } \text { - When a membrane } \\ & \text { permits only one kind of ion to pass, }\end{aligned} \quad \Delta V=\frac{k_{B} T}{q} \ln \left(\frac{c_{1}}{c_{2}}\right)$ diffusion from the side with a greater concentration of that kind of ion will build up a potential difference due to ions moving to the side with the lower concentration.

Resistivity and Conductance

■ The resistance factor in Ohm' s Law separates into a geometrical part (L / A) times a part independent of the size and shape but dependent on the material.
\square This coefficient is called the resistivity of the material (ρ). Its reciprocal (g) is called conductivity. The reciprocal of the resistance is called the conductance (G).

$$
R=\left(\frac{b L}{q^{2} n A}\right)=\rho \frac{L}{A}=\frac{1}{g} \frac{L}{A}=\frac{1}{G}
$$

Foothold ideas:

Currents

- Charge is moving: How much?

$$
I=\frac{\Delta q}{\Delta t}
$$

■ How does this relate to the individual charges?

$$
I=q n A v
$$

■ Constant flow means pushing force balances the drag force

■ What pushes the charges through resistance? Electric force implies a drop in V !

$$
\begin{aligned}
& m a=F_{e}-b v \\
& a=0 \Rightarrow v=F_{e} / b
\end{aligned}
$$

Ohm' s Law

■ Current proportional to velocity $I=q n A v \Rightarrow v=\frac{I}{q n A}$

- Due to resistance,

Electric force proportional to velocity.

- Force proportional to
"electric "pressure drop"
$=$ "electric PE"
■ Therefore, current proportional to "electric PE"

$$
\Delta V=I R \quad \Delta V=I\left(\frac{b L}{q^{2} n A}\right) \equiv I R
$$

$$
\begin{aligned}
\Delta V=E L & \Rightarrow E=\frac{\Delta V}{L} \\
& \Rightarrow \frac{q \Delta V}{L}=\frac{b I}{q n A}
\end{aligned}
$$

Foothold ideas: Kirchhoff's principles

1. Flow rule: The total amount of current flowing into any volume in an electrical network equals the amount flowing out.
2. Ohm's law: in a resistor, $\quad \Delta V=I R$
3. Loop rule: Following around any loop in an electrical network the potential has to come back to the same value (sum of drops = sum of rises).

Very useful heuristic

- The Constant Potential Corollary (CPC)
- Along any part of a circuit with 0 resistance, then $\Delta V=0$, i.e., the voltage is constant since in any circuit element

$$
\begin{aligned}
& \Delta V=I R \\
& R=0 \Rightarrow \Delta V=0 \\
& (\text { even if } I \neq 0)
\end{aligned}
$$

Electric Power

- The rate at which electric energy is depleted from a battery or dissipated
(into heat or light) in a resistor is

$$
\text { Power }=\frac{d W}{d t}=\frac{d}{d t}(q \Delta V)=\frac{d q}{d t} \Delta V=I \Delta V
$$

Units

■ Current (I)
■ Voltage (V)
■ E-Field (E)

- Resistance (R)

■ Capacitance (C) Farad = Volt/Coulomb
■ Power (P)
Ampere $=$ Coulomb/sec
Volt $=$ Joule/Coulomb
Newton/Coulomb $=$ Volt/meter
Ohm $=$ Volt/Ampere
$\mathbf{W a t t}=$ Joule $/$ sec

Analogy 1: The rope model

■ Since like charges repel strongly, there can't be a buildup of charge anywhere in the circuit (unless we make a special arrangement -- capacitance).
■ Moving charges push other movable charges in front of them. The electrons move like links in a chain or rope.

Analogy 2 (Drude model): Ping-pong balls and nail board

- In this analogy, we treat the electrons as small particles that can move freely through the conductor. (ping-pong balls)
- The ions that form the fixed body of the conductor are treated as fixed. (nails)
- The electron move freely between the ions until they hit them. Then they scatter in a random direction.

Analogy 3: Water flow

■ The rope analogy fails because electrons can go either way at a junction. A current can split in a way a rope cannot.

- Water flow is a useful analogy because water
- can divide
- is conserved and cannot be compressed.

Analogy 4: Air flow

- Pressure is analogous to electric potential.
- Pressure drop produces flow.

■ Amount of flow depends on what is connected across a pressure drop.

Series and parallel

\square Series

- Same current flows through both devices

$$
\begin{aligned}
& I=\frac{\Delta V_{A}}{R_{A}}=\frac{\Delta V_{B}}{R_{B}} \\
& \frac{\Delta V_{A}}{\Delta V_{B}}=\frac{R_{A}}{R_{B}} \\
& \Delta V=\Delta V_{A}+\Delta V_{B} \\
& =I\left(R_{A}+R_{B}\right)
\end{aligned}
$$

■ Parallel

- Same voltage drop across both devices

Oscillation and waves: I - physics

■ Broadly, Physics has two ways of building understanding of matter:

- "Particles" - bits of matter and their rules of behavior (interactions, forces, Newton's laws)
- "Waves" - motion of vibrating patterns (oscillating matter and fields, Huygens' principle, Maxwell's equations)
- Interestingly, at the sub-atomic level these two approaches are both required and blend into something new and different from either.

Oscillation and waves: II - biology

- The physics of oscillations and waves have important implications for biology.
- Many things in biology oscillate (carry out a repeating varying pattern)
- Biological systems use oscillating waves to get information about their environment: sound, light
- Waves carry rich information about their sources. Biology researchers (and physicists and astronomers) use the complex structure of waves to probe and gain information about biological systems.

Oscillation and waves: III - pedagogy

■ Waves are complicated mathematical concepts. Just as the concept of "field" was a step up in complexity from "particle" or "object", "wave" is a step up in complexity from "field".

- We'll now consider not just a field distributed in space but we'll study how it can change in both space and time.
- We will have to consider oscillations in both space and time - functions of two variables.
- We'll build the math required slowly, starting with the oscillation of one object: the harmonic oscillator.

Foothold ideas:
 Harmonic oscillation

- There is an equilibrium (balance) point where the mass can stay without moving.
\square Whichever way the mass moves, the force is in the direction of pushing it back to its equilibrium position.
- When it gets back to its equilibrium, it's still moving so it overshoots.

Toy Model system: Mass on a Spring

■ Consider a cart of mass m attached to a light (mass of spring $\ll m$) spring.
■ Choose the coordinate system so that when the cart is at 0 the spring it at its rest length
\square Recall the properties of an ideal spring.

- When it is pulled or pushed on both ends it changes its length.

$$
T=k \Delta l
$$

Analyzing the forces: cart \& spring

- FBD:

What are
the forces acting on the cart?

Analyzing the energy: cart \& spring

- What are
the energies
in the cart-spring system?

Summary with Equations:

 Mass on a spring$a=\frac{1}{m} F^{n e t}$
Measured from where?

$$
x(t)=A \cos \left(\omega_{0} t+\phi\right)
$$

Summary with Equations:

 Mass on a spring (Energy) $\AA_{F_{s \rightarrow M}}^{\text {Measured }}+$from where?

$$
E=\frac{1}{2} m v^{2}+m g h+\frac{1}{2} k(\Delta l)^{2}
$$

$$
E_{i}=E_{f}
$$

32

The small angle approximation

$$
\begin{aligned}
& \sin \theta=\theta-\frac{\theta^{3}}{3!}+\frac{\theta^{5}}{5!}-\frac{\theta^{7}}{7!}+\ldots \\
& \cos \theta=1-\theta^{2}+\frac{\theta^{4}}{4!}-\frac{\theta^{6}}{6!}+\ldots \\
& \tan \theta=\theta+\frac{\theta^{3}}{3!}+\frac{\theta^{5}}{5!}-\frac{\theta^{7}}{7!}+\ldots
\end{aligned}
$$

This is how these are calculated! (Didn't you ever wonder how they did that?)

But these are often good enough.

$$
\begin{array}{ll}
\sin \theta \approx \theta & \text { Good to } 1 \% \text { for } \theta<1 / 4 \mathrm{rad}\left(15^{\circ}\right) \\
\cos \theta \approx 1-\frac{1}{2} \theta^{2} & \text { Good to } 1 \% \text { for } \theta<1 / 3 \mathrm{rad}\left(20^{\circ}\right) \\
\tan \theta \approx \theta & \text { Good to } 1 \% \text { for } \theta<1 / 4 \mathrm{rad}\left(15^{\circ}\right)
\end{array}
$$

Pendulum motion energy

$$
\begin{aligned}
& E_{0}=\frac{1}{2} m v^{2}+m g h=\frac{1}{2} m v^{2}+m g L(1-\cos \theta) \\
& \cos \theta \approx 1-\frac{1}{2} \theta^{2} \\
& E_{0} \approx \frac{1}{2} m v^{2}+\frac{1}{2}[m g L] \theta^{2} \\
& \theta \approx \sin \theta=\frac{x}{L} \\
& E_{0} \approx \frac{1}{2} m v^{2}+\frac{1}{2} k x^{2} \quad k=\frac{m g}{L}
\end{aligned}
$$

Same as mass on a spring!
Just with a different $\omega_{0}{ }^{2}=k / m=g / L$

What's the period? Why doesn' t it depend on m ?

Foothold ideas: Damped oscillator

- Our toy model of an oscillator gave the result $x(t)=A \cos \left(\omega_{0} t\right)$.
- As we watch, it doesn't do that.

What are we missing?

Foothold ideas: Damped oscillator 1

\square Amplitude of an oscillator tends to decrease. Simplest model is viscous drag.

$$
\begin{aligned}
& m a=-k x-b v \\
& \frac{d^{2} x}{d t^{2}}+\gamma \frac{d x}{d t}+\omega_{0}^{2} x=0 \quad \gamma=\frac{b}{m} \quad \omega_{0}=\sqrt{\frac{k}{m}}
\end{aligned}
$$

■ Solution:

$$
\begin{aligned}
& x(t)=A_{0} e^{-\gamma t / 2} \cos \left(\omega_{1} t+\phi\right) \\
& \omega_{1}=\sqrt{\omega_{0}^{2}-\frac{\gamma^{2}}{4}}
\end{aligned}
$$

Foothold ideas: Damped oscillator 2

\square Competing time constants:
Decay time Period
■ If:

$$
\begin{aligned}
& Q=\frac{\omega_{0}}{\gamma}=\pi \frac{\tau}{T} \\
& \text { Tells which force } \\
& \text { dominates: restoring } \\
& \text { or damping. }
\end{aligned}
$$

$\omega_{0}>\gamma / 2$ underdamped: oscillates
$\omega_{0}=\gamma / 2$ critically damped: no oscillation, fastest decay
$\omega_{0}<\gamma / 2$ over damped: no oscillation, slower decay

Foothold ideas: Driven oscillator

- Adding an oscillating force.
\square When the extra oscillating force (driver) matches the natural frequency of the oscillator you get a big displacement (resonance). Otherwise, not much.

Foothold principles: Mechanical waves

■ Key concept: We have to distinguish the motion of the bits of matter and the motion of the pattern.
■ Pattern speed: a disturbance moves into a medium with a speed that depends on the properties of the medium (but not on the shape of the disturbance)

- Matter speed: the speed of the bits of matter depend on both the size and shape of the pulse and on the pattern speed.
- Mechanism: the pulse propagates by each bit of $\underset{41017}{\text { string pulling on the next }}{ }_{\text {nyysiss }}^{132}$.

Foothold principles:

Waves on a stretched string

- A stretched string can propagate both transverse and longitudinal waves. In both cases the pattern and the matter motions have to be distinguished..
- Pattern speed: a disturbance moves on the string with the speed where τ is the tension and

$$
v_{0}=\sqrt{\frac{\tau}{\mu}}
$$ μ is the mass density (M / L).

■ Matter speed: the matter in a transverse wave moves with a velocity that depends on the slope of the wave at that point $(d y / d x)$ times v_{0}.

Foothold principles: Mechanical waves 2

■ Superposition: when one or more disturbances overlap, the result is that each point displaces by the sum of the displacements it would have from the individual pulses. (signs matter)

- Beats: When sinusoidal waves of different frequencies travel in the same direction, you get variations in amplitude (when you fix either space or time) that happen at a rate that depends on the difference of the frequencies.
- Standing waves: When sinusoidal waves of the same frequency travel in opposite directions, you get a stationary oscillating pattern with fixed nodes.

Beats

■ Adding two sinusoidal oscillations with nearby frequencies leads to alternate enhancement and cancellation producing pulses. (When we do this with a space oscillations with nearby wavelengths we call the result wave packets.)
\square This comes from the trig identity

$$
\sin (a+b)=\sin a \cos b+\cos a \sin b
$$

which gives

$$
\begin{aligned}
& A \sin \left(\omega_{1} t\right)+A \sin \left(\omega_{2} t\right)=2 A \sin (\bar{\omega} t) \cos \left(\frac{\Delta \omega}{2} t\right) \\
& \bar{\omega}=\frac{\omega_{1}+\omega_{2}}{2} \quad \Delta \omega=\omega_{1}-\omega_{2}
\end{aligned}
$$

Standing Waves

\square Some points in this pattern (values of x for which $k x=\mathrm{n} \pi$) are always 0 . (NODES)
\square We can tie the string down at these points and still let it wiggle in this shape. (Why???)
\square To wiggle like this (all parts oscillating together) we need to have (Why???)
\square We still have $v_{0}=\omega / k$ that is $v_{0}=\lambda f$

