■ Theme Music: Arvo Pärt Spiegel im Spiegel (Mirror in Mirror)

■ Cartoon: Virgil Partch

Outline

■ Go over Quiz 10
■ Plane mirrors

- Virtual images

■ Spherical mirrors

- Real images

■ Examples

Quiz 10

A

1.1	1.2	1.3	1.4		2.1		2.2		2.3
3%	1%	87%	11%	6	57%	0.2	4%	Y	86%
16%	3%	8%	68%	6.2	8%	0.4	63%	N	13%
63%	10%	2%	11%	6.4	6%	0.5	15%		
10%	68%	1%		other	30%	0.8	6%		
	18%	3%				other	12%		

Foothold Ideas 1:
 The Physics

■ Certain objects (the sun, bulbs,...) give off light.
■ Through empty space (or ~air) light travels in straight lines.
■ Each point on an object scatters light, spraying it off in all directions.

- A polished surface reflects rays back again according to the rule: The angle of incidence equals the angle of reflection.

Foothold Ideas 2:
 The Psycho-physiology

■ We only see something when light coming from it enters our eyes.
■ Our eyes identify a point as being on an object when rays traced back converge at that point.
(An over-simplification)

Where does an object seen in a mirror appear to be?

What happens when a ray hits a curved mirror?

A Spherical Mirror: Central Rays

A few rays are easy to figure out

All rays satisfy the "angle of incidence = angle of reflection" measured to the normal to the surface

All rays through the center strike the mirror perpendicular to the surface and bounce back along their incoming path.

A Spherical Mirror: Central Ray

A few rays are easy to figure out where they go.
center of sphere

All rays satisfy
the "angle of incidence $=$ angle of reflection" measured to the normal to the surface

The ray hitting the central line of the diagram is particularly simple.

A Spherical Mirror: Parallel Rays

Kinds of Images: Real

\square In the case of the previous slide, the rays seen by the eye do in fact converge at a point.
$■$ When the rays seen by the eye do meet, the image is called real.
■ If a screen is put at the real image, the rays will scatter in all directions and an image can be seen on the screen, just as if it were a real object.

