■Theme Music: Frank Sinatra Wave
 ■Cartoon: Randall Munroe, xkcd

Outline

■ Go over Quiz 9
■ Beats
■ Standing Waves

Quiz 9

	1.1	1.2	$\mathbf{2}$	3.a	3.b	3.c
A	39%	2%	22%			
B	37%	1%	3%			
C	10%	45%	36%			
D	7%	51%	13%			
N	6%	2%	0%			
P				45%	3%	61%
$\mathbf{0}$				1%	88%	1%
\mathbf{N}				54%	9%	38%

Foothold principles:
 Mechanical waves 2

- Superposition: when one or more disturbances overlap, the result is that each point displaces by
 the sum of the displacements it would have from the individual pulses. (signs matter)
- Beats: When sinusoidal waves of different frequencies travel in the same direction, you get variations in amplitude (when you fix either space or time) that happen at a rate that depends on the difference of the frequencies.
- Standing waves: When sinusoidal waves of the same frequency travel in opposite directions, you get a stationary oscillating pattern with fixed nodes. 4/10/17

Beats

Adding two sinusoidal oscillations with nearby frequencies leads to alternate enhancement and cancellation producing pulses.
(When we do this with a space oscillations with nearby wavelengths we call the result wave packets.)
■ This comes from the trig identity

$$
\sin (a+b)=\sin a \cos b+\cos a \sin b
$$

which gives

$$
\begin{aligned}
& A \sin \left(\omega_{1} t\right)+A \sin \left(\omega_{2} t\right)=2 A \sin (\bar{\omega} t) \cos \left(\frac{\Delta \omega}{2} t\right) \\
& \bar{\omega}=\frac{\omega_{1}+\omega_{2}}{2} \quad \Delta \omega=\omega_{1}-\omega_{2}
\end{aligned}
$$

Adding Sinusoidal Waves going in opposite directions

$■$ Interesting things happen when we add two sinusoidal waves.

$$
y=A \sin (k x-\omega t)+A \sin (k x+\omega t)
$$

Using trig identities ($\mathrm{sc}+\mathrm{cs} \ldots$...) we can show

$$
y=2 A \sin (k x) \cos (\omega t)
$$

\square For each point on the string labeled " x " it oscillates with an amplitude that depends on where it is - but all parts of the string go up and down together.

Standing Waves

- Some points in this pattern (values of x for which $k x=n \pi$) are always 0 . (NODES)
$■$ We can tie the string down at these points and still let it wiggle in this shape. (Why???)
■ To wiggle like this (all parts oscillating together) we need to have (Why???)

$$
L=n \frac{\lambda}{2}
$$

\square We still have $v_{0}=\omega / k$ that is $v_{0}=\lambda f$

Explore with a simulation

http://phet.colorado.edu/en/simulation/normal-modes

