

Outline

- The makeup exam
\square Recap: the math of the harmonic oscillator
\square The long pendulum
- The small angle approximation
- The physics

■ Damped and driven oscillators

Example from the makeup exam (that a lot of folks had trouble with)

- Clicker question from last term
Two atoms have the interaction PE shown in the graph at the right. They start approaching each other with a very small KE (shown by the red line). How close will they get to each other before bouncing back?
A. 1.0 nm
B. 1.1 nm
C. Something else

A lot of folks are still having trouble with the basic ideas of estimations

1. Give enough words so we can follow your reasoning.
2. Decide what it is you need to calculate (formulas).

Cross-check formulas to be sure they're correct.
3. Do you estimations from things you know
(Know your basics!) and tell how you got them.
4. Keep units throughout and USE THEM to make sure you've done the correct calculation.
5. Don't keep more than 2-3 sig figs anywhere in the calculation.
6. NEVER write an untrue equation. ("= as $\rightarrow "$)
7. Be sure you answer all the questions asked!
8. Throughout, treat your numbers as MEASUREMENTS and check them for reasonableness!

Analyzing the forces: hanging mass on a spring

■ FBD:

What are the forces
acting on the mass?

Summary with Equations:
Mass on a spring (Energy) $\prod_{\begin{array}{l}\text { Measured } \\ \text { from where? }\end{array}}^{\underbrace{}_{F_{\epsilon \rightarrow \cdots}}}$
$E=\frac{1}{2} m v^{2}+m g h+\frac{1}{2} k(\Delta L)^{2}$
$E_{i}=E_{f}$

The Long Pendulum

The small angle approximation

\square Set your calculator to work in radians.
■ What happens to cos for small angles?
■ What happens to sin for small angles?

Pendulum

\square Restoring force $=T \sin \theta$
\square For small θ, there is very little vertical motion, so $T \approx m g$
\square Restoring force $\approx m g \sin \theta$
\square Restoring force $\approx m g(x / L)$

$■$ Newton's $2^{\text {nd }}$ Law:
$m a=-(m g / L) x$

The small angle approximation

$$
\begin{aligned}
& \sin \theta=\theta-\frac{\theta^{3}}{3!}+\frac{\theta^{5}}{5!}-\frac{\theta^{7}}{7!}+\ldots \\
& \cos \theta=1-\theta^{2}+\frac{\theta^{4}}{4!}-\frac{\theta^{6}}{6!}+\ldots \\
& \tan \theta=\theta+\frac{\theta^{3}}{3!}+\frac{\theta^{5}}{5!}-\frac{\theta^{7}}{7!}+\ldots
\end{aligned}
$$

This is how these are calculated! (Didn't you ever wonder how they did that?)

But these are often good enough.

$$
\begin{array}{ll}
\sin \theta \approx \theta & \text { Good to } 1 \% \text { for } \theta<1 / 4 \mathrm{rad}\left(15^{\circ}\right) \\
\cos \theta \approx 1-\frac{1}{2} \theta^{2} & \text { Good to } 1 \% \text { for } \theta<1 / 3 \mathrm{rad}\left(20^{\circ}\right) \\
\tan \theta \approx \theta & \text { Good to } 1 \% \text { for } \theta<1 / 4 \mathrm{rad} \\
\left(15^{\circ}\right)
\end{array}
$$

Pendulum motion energy

$$
\begin{aligned}
& E_{0}=\frac{1}{2} m v^{2}+m g h=\frac{1}{2} m v^{2}+m g L(1-\cos \theta) \\
& \cos \theta \approx 1-\frac{1}{2} \theta^{2} \\
& E_{0} \approx \frac{1}{2} m v^{2}+\frac{1}{2}[m g L] \theta^{2} \\
& \theta \approx \sin \theta=\frac{x}{L} \\
& E_{0} \approx \frac{1}{2} m v^{2}+\frac{1}{2} k x^{2} \quad k=\frac{m g}{L}
\end{aligned}
$$

Same as mass on a spring!
Just with a different $\omega_{0}{ }^{2}=k / m=g / L$
 What's the period? Why doesn' t it depend on m ?

Foothold ideas: Damped oscillator

- Our toy model of an oscillator gave the result $x(t)=A \cos \left(\omega_{0} t\right)$.

- As we watch, it doesn't do that. What are we missing?

Foothold ideas:
 Damped oscillator 1

\square Amplitude of an oscillator tends to decrease.
Simplest model is viscous drag.

$$
\begin{aligned}
& m a=-k x-b v \\
& \frac{d^{2} x}{d t^{2}}+2 \gamma \frac{d x}{d t}+\omega_{0}^{2} x=0 \quad \gamma=\frac{b}{2 m} \quad \omega_{0}=\sqrt{\frac{k}{m}}
\end{aligned}
$$

- Solution:

$$
\begin{aligned}
& x(t)=A_{0} e^{-\gamma t} \cos \left(\omega_{1} t+\phi\right) \\
& \omega_{1}=\sqrt{\omega_{0}^{2}-\gamma^{2}}
\end{aligned}
$$

Foothold ideas:
 Damped oscillator 2

\square Competing time constants:

$\omega_{0}>\gamma$ underdamped: oscillates
$\omega_{0}=\gamma \quad$ critically damped: no oscillation, fastest decay $\omega_{0}<\gamma$ over damped: no oscillation, slower decay

Foothold ideas: Driven oscillator

- Adding an oscillating force.
- When the extra oscillating force (driver) matches the natural frequency of the oscillator you get a big displacement (resonance). Otherwise, not much.

3/31/17

https://phet.colorado.edu/en/simulation/legacy/resonance https://www.youtube.com/watch?v=17tqXgvCN0E

