

Outline

■uiz 7
■ Harmonic oscillation
■ Mass on a spring
■ Oscillatory math: sines and cosines
■ Equation of motion

- Physical interpreation

Oscillation and waves: I - physics

■ Broadly, Physics has two ways of building understanding of matter:

- "Particles" - bits of matter and their rules of behavior (interactions, forces, Newton's laws)
- "Waves" - motion of vibrating patterns (oscillating matter and fields, Huygens' principle, Maxwell's equations)
- Interestingly, at the sub-atomic level these two approaches are both required and blend into something new and different from either.

Oscillation and waves: II - biology

- The physics of oscillations and waves have important implications for biology.

- Many things in biology oscillate (carry out a repeating varying pattern)
- Biological systems use oscillating waves to get information about their environment: sound, light
- Waves carry rich information about their sources. Biology researchers (and physicists and astronomers) use the complex structure of waves to probe and gain information about biological systems.

Oscillation and waves: III - pedagogy

■ Waves are complicated mathematical concepts.
 Just as the concept of "field" was a step up in complexity from "particle" or "object", "wave" is a step up in complexity from "field".

- We'll now consider not just a field distributed in space but we'll study how it can change in both space and time.

We will have to consider oscillations in both space and time - functions of two variables.

- We'll build the math required slowly, starting with the oscillation of one object: the harmonic oscillator.

Foothold ideas: Harmonic oscillation

\square There is an equilibrium (balance) point
 where the mass can stay without moving.
■ Whichever way the mass moves, the force is in the direction of pushing it back to its equilibrium position.

- When it gets back to its equilibrium, it's still moving so it overshoots.

Toy Model system: Mass on a Spring

■ Consider a cart of mass m attached to a light (mass of spring $\ll m$) spring.
■ Choose the coordinate system so that when the cart is at 0 the spring it at its rest length
$■$ Recall the properties of an ideal spring.

- When it is pulled or pushed on both ends it changes its length.

$$
T=k \Delta l
$$

Analyzing the forces: cart \& spring

■ FBD:
What are the forces acting on the cart?

3/27/17
Physics 132
10

Why do we have two springs?

Doing the Math:
 The Equation of Motion

\square The N2 equation for the cart is

$$
a=F_{n e t} / m=-k x / m=-\left(\frac{k}{m}\right) x
$$

■ What kind of a quantity is k / m ?

$$
\left[\frac{k}{m}\right]=
$$

Mathematical structure

\square Express $a=F^{\text {net }} / m$ in terms of derivatives.

$$
\frac{d^{2} x}{d t^{2}}=-\omega_{0}^{2} x
$$

\square Except for the constant, this is like having a functions that is its own second derivative.

$$
\frac{d^{2} f}{d t^{2}}=-f
$$

■ In calculus, we learn that $\sin (\mathrm{t})$ and $\cos (\mathrm{t})$ work like this. How about: $x=\cos t$?

A better answer

\square We have to have an x that has units of distance. Since cos is a ratio it is unitless.
$■$ We can't take the cos of a dimensioned number. It has to be an angle - radian is a ratio of two distances so its dimensionless.
$■$ This fixes it (if $[A]=\mathrm{L}$ and $\left[\omega_{0}\right]=1 / \mathrm{T}$)

$$
x(t)=A \cos \left(\omega_{0} t\right)
$$

Interpreting the Result

- We' 11 leave it to our friends in math to show that these results actually satisfy the N 2 equations.
What do the various terms mean?
- A is the maximum displacement - the amplitude of the oscillation.
- What is ω_{0} ? If T is the period (how long it takes to go through a full oscillation) then

$$
\begin{aligned}
& \omega_{0} t: 0 \rightarrow 2 \pi \\
& t \quad: 0 \rightarrow T \\
& \omega_{0} T=2 \pi \underset{\text { Physics } 132}{\Rightarrow} \omega_{0}=\frac{2 \pi}{T}
\end{aligned}
$$

Analyzing the energy: cart \& spring

Graphs: $\sin (\theta)$ vs $\cos (\theta)$

■ Which is which? How can you tell?
\square The two functions sin and cos are derivatives of each other (slopes), but one has a minus sign. Which one?
How can you tell?

Graphs: $\sin (\theta)$ vs $\sin \left(\omega_{0} \mathrm{t}\right)$

\square For angles, $\theta=0$ and $\theta=2 \pi$ are the same so you only get one cycle.
■ For time, t can go on forever so the cycles repeat.

PhET sim: Trig Tour

