- Theme Music: Charley Pride Field of Dreams
- Cartoon: Bob Thaves

Frank \& Ernest

Foothold ideas:
 Charge - A hidden property of matter

- Matter is made up of two kinds of electrical matter (positive and negative) that usually cancel very precisely.
- Like charges repel, unlike charges attract.
- Bringing an unbalanced charge up to neutral matter polarizes it, so both kinds of charge attract neutral matter
- The total amount of charge (pos - neg) is constant.

Foothold ideas:
 Conductors and Insulators

- Insulators
- In some matter, the charges they contain
 are bound and cannot move around freely.
- Excess charge put onto this kind of matter tends to just sit there (like spreading peanut butter).
- Conductors
- In some matter, charges in it can move around throughout the object.
- Excess charge put onto this kind of matter redistributes itself or flows off (if there is a conducting path to ground).

Foothold idea: Coulomb's Law

- All objects attract each other with a force
 whose magnitude is given by

$$
\vec{F}_{q \rightarrow Q}=-\vec{F}_{Q \rightarrow q}=\frac{k_{C} q Q}{r_{q Q}^{2}} \hat{r}_{q \rightarrow Q}
$$

- k_{C} is put in to make the units come out right.

$$
k_{C}=9 \times 10^{9} \mathrm{~N}-\mathrm{m}^{2} / \mathrm{C}^{2}
$$

Foothold ideas: Energies in charge clusters

- Atoms and molecules are made up of charges.
- The potential energy between two charges is

$$
U_{12}^{\text {elec }}=\frac{k_{C} Q_{1} Q_{2}}{r_{12}}
$$

No vectors!

- The potential energy between many charges is

$$
U_{12 \ldots N}^{\text {elec }}=\sum_{i<j=1}^{N} \frac{k_{C} Q_{i} Q_{j}}{r_{i j}} \quad \begin{gathered}
\text { Just add up } \\
\text { all pairs! }
\end{gathered}
$$

Electric energy

- If we start with a system of charge $q_{1}, q_{2}, \ldots q_{\mathrm{N}}$ the electric potential energy of the system is

Electric energy of the system of charges $q_{1},,, q_{\mathrm{N}}$

$$
U_{1 \ldots N}^{\text {elec }}=\sum_{i<j} \sum_{j=1}^{N}\left(\frac{k_{C} q_{i} q_{j}}{r_{i j}}\right)
$$

Adding a test charge.

- We are often interested to what happens to one last charge (a "test charge") when we add it to a system of already existing charges.
- Assuming that the charges $1 . . . \mathrm{N}$ don't move when we add a charge q_{0}, the new electric energy after adding

$$
\begin{aligned}
& \text { the charge is } \\
& \qquad U_{01 \ldots N}^{\text {elec }}=U_{1 \ldots N}^{\text {elec }}+\sum_{j=1}^{N}\left(\frac{k_{C} q_{0} q_{j}}{r_{i j}}\right) \\
& \Delta U_{0}^{\text {elec }}=\sum_{j=1}^{N}\left(\frac{k_{C} q_{0} q_{j}}{r_{0 j}}\right)=q_{0}\left[\sum_{j=1}^{N}\left(\frac{k_{C} q_{j}}{r_{0 j}}\right)\right]
\end{aligned}
$$

Why fields?

- Fields are a useful way to talk about forces that act without touching.
- It reduces the "spookiness" of objects interacting when they are far apart. The source object creates an effect (field) everywhere and the test object measures that effect where it is. (Only psychological value)
- Fields allow us to talk about forces due to many charges that we don't know how to specify or where they are.
- Since all matter has lots of charge we can't specify where each charge is. Summing over them all would be impossible. Talking about what fields they produce allows us to sum the effect of many charges. (Real practical value)

Foothold idea:
 Fields

- Test particle
- We pay attention to what force it feels. We assume it does not have any affect on the source particles.
- Source particles
- We pay attention to the forces they exert and assume they do not move.
- Physical field
- We consider what force a test particle would feel if it were at a particular point in space and divide by its coupling strength to the force. This gives a vector at each point in space.

$$
\vec{g}=\frac{1}{m} \vec{W}_{E \rightarrow m} \quad \vec{E}=\frac{1}{q} \vec{F}_{\text {all charges } \rightarrow q} \quad V=\frac{1}{q} U_{\text {all charges } \rightarrow \mathrm{q}}^{\text {elec }}
$$

Units

- Gravitational field

$$
\text { units of } g=\text { Newtons } / \mathrm{kg}
$$

- Electric field

$$
\text { units of } E=\text { Newtons/C (also Volts/m) }
$$

- Electric potential

$$
\text { units of } V=\mathrm{Joules} / \mathrm{C}=\text { Volts }
$$

Energy $=q V$, so $e \Delta V=$ the energy gained by an electron (charge $e=1.6 \times 10^{-19} \mathrm{C}$) in moving through a change of ΔV volts.

$$
1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J} \longleftarrow \begin{aligned}
& \text { A very useful and natural unit } \\
& \text { when dealing with individual } \\
& \text { atoms and molecules! }
\end{aligned}
$$

