February 15, $2017 \quad$ Physics $132 \quad$ Prof. E. F. Redish
$■$ Theme Music: Zimmer \& Howard
Agents of Chaos
■ Cartoon: Bob Thaves
Frank \& Ernest
Frank and Ernest

Copyright (c) 1992 by Thaves. Distributed from www.thecomics.com.

Quiz 3

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
A	11%	2%	24%	16%
B	2%	6%	42%	85%
C	82%	1%	2%	0%
D	5%	1%	32%	
		86%	1%	

Quiz 3

Foothold ideas:
 The Second Law of Thermodynamics

Systems spontaneously move toward the thermodynamic (macro)state that correspond to the largest possible number of particle arrangements (microstates).

- The $2^{\text {nd }}$ law is probabilistic. Systems show fluctuations violations that get proportionately smaller as N gets large.
- Systems that are not in thermodynamic equilibrium will spontaneously transform so as to increase the entropy.
- The entropy of any particular system can decrease as long as the entropy of the rest of the universe increases more.
■ The universe tends towards states of increasing chaos and uniformity. (Is this contradictory?)

Foothold ideas:
 Energy distribution

■ Due to the randomness of thermal collisions, even in (local) thermal equilibrium the energy in each DoF fluctuates, so a range of energy will be found in each degree of freedom.
\square The probability of adding an energy ΔE is proportional to the Boltzmann factor

$$
\begin{aligned}
& P(\Delta E) \propto e^{-\Delta E / k_{B} T}(\text { for one DoF) } \\
& P(\Delta E) \propto e^{-\Delta E / R T}(\text { for one mole })
\end{aligned}
$$

■ At 300 K ,

$$
\begin{aligned}
& k_{\mathrm{B}} T \sim 1 / 40 \mathrm{eV}=25 \mathrm{meV} \\
& N_{\mathrm{A}} k_{\mathrm{B}} T=R T \sim 2.4 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

The Boltzmann probability

- The probability of finding an additional energy ΔE in a DoF is proportional to the number of ways that that energy can be distributed, W.
- The overall probability has to be normalized so that the sum (integral) over all energies is 1 .

$$
P(\Delta E, T)=P_{0} W(\underbrace{\Delta E, T)} e^{-\Delta E / k_{B} T}
$$

The number of ways ΔE can be distributed at a temperature T

