February 10, $2017 \quad$ Physics $132 \quad$ Prof. E. F. Redish

- Theme Music: Desi Arnaz

Perhaps, perhaps, perhaps
■ Cartoon: Pat Brady

## Rose is Rose



## The structure of science knowledge




Foothold ideas:

■ Entropy - an extensive* measure of how well energy is spread in an object.

■ Change in entropy upon heat flow (exchange of thermal energy)

$$
\Delta S=\frac{Q}{T}
$$

* Extensive = proportional to the amount of stuff you have (like mass) Intensive = independent of the amount of stuff you have (like density)


Foothold ideas:
Entropy
Entropy - an extensive* measure of hov well energy is spread in an object.
■ Entropy measures

- The number of microstates in a given macrostate
- The amount that the energy of a system is spread among the various degrees of freedom

$$
S=k_{B} \ln (W)
$$

## How is entropy extensive?

■ $W_{\mathrm{A}}=$ number of microstates for system A

- $W_{\mathrm{B}}=$ number of microstates for system B
- $W_{\text {total }}=W_{\mathrm{A}} W_{\mathrm{B}}$
$\square S_{\mathrm{A}}=k_{B} \ln W_{\mathrm{A}}$
- $S_{\mathrm{B}}=k_{B} \ln W_{\mathrm{B}}$
$\square S_{\mathrm{AB}}=k_{B} \ln \left(W_{\mathrm{A}} W_{\mathrm{B}}\right)=k_{B} \ln W_{\mathrm{A}}+k_{B} \ln W_{\mathrm{B}}$
- $S_{\mathrm{AB}}=S_{\mathrm{A}}+S_{\mathrm{B}}$


## Foothold ideas: Exponents and logarithms

- Power law: $\quad f(x)=x^{2} \quad g(x)=A x^{7}$
a variable raised to a fixed power.
高 $\square$ Exponential: $\quad f(x)=e^{x} \quad g(N)=2^{N} \quad h(z)=10^{z}$ a fixed constant raised to a variable power.
$\square$ Logarithm: the inverse of the exponential.

$$
\begin{array}{ll}
x=e^{\ln (x)} & x=\ln \left(e^{x}\right) \\
y=10^{\log (y)} & y=\log \left(10^{y}\right)
\end{array}
$$

2/10/17

$$
\begin{aligned}
& \log (2)=0.3010 \\
& \log (e)=0.4343 \\
& 2^{N}=\left(10^{0.3010}\right)^{N} \approx 10^{0.3 N} \\
& e^{x}=\left(10^{0.4343}\right)^{x} \approx 10^{0.4 x} \\
& 2^{N}=B \\
& N \log 2=\log B \Rightarrow N=\frac{\log B}{\log 2}
\end{aligned}
$$

