February 3, 2017
Physics 132 Prof. E. F. Redish
$■$ Theme Music: Zimmer \& Howard
Agent of Chaos (from The Dark Knight)
■ Cartoon: Mike Peters
Mother Goose \& Grimm

Energy conservation in chemical reactions

■ A system has internal energy, U

- We break that down into thermal energy, $\mathrm{U}_{\text {thermal }}$, and chemical energy $\mathrm{U}_{\text {chemical }}$
- In a closed chemical reaction, the total energy stays the same, but goes back and forth between $U_{\text {thermal }}$ and $U_{\text {chemical }}$
■ But energy could also go in or out of the system as heat or work.

Changing our assumptions

■ In each of our examples from the last class, we imagined a gas (or two gases) reacting in a closed container.

■ While this is plausible - and relevant for many mechanical engineering example (the piston in the engine of an automobile, for example) in most biological situations, reactions occur at a constant pressure (in the open), not at a constant volume.
\square What does that do to our energy conservation?

Why we need enthalpy

\square When chemicals react in the open, they do so in a pressurized environment. They will expand or contract in order to maintain their pressure.
■ In so doing, they will either do work on their environment or have work done on them.

■ This will change the energy balance equation.

Recap: Partial pressure

■ In a gas, pressure is produced by molecules hitting any surface introduced into it.

$$
p V=N k_{B} T \quad p=n k_{B} T \quad n=\frac{N}{V}
$$

■ If T is constant, p is directly proportional to $n-$ the number density.
Mixing many gases together, the pressure just adds the result of each molecule hitting the wall.
\square The total p is the sum of the partial pressures.

$$
p=p_{1}+p_{2}+\ldots=\left(n_{1}+n_{2}+\ldots\right) k_{B} T
$$

Foothold ideas: Enthalpy

■ When a chemical reaction takes place at a constant \boldsymbol{T} and \boldsymbol{p} (especially in a gas), the gas may have to do work to "make room for itself". This affects the energy balance between the chemical energy change and the thermal energy change.
■ Define enthalpy, H

$$
\Delta H=\Delta U_{\text {thermal }}+\Delta U_{\text {chemical }}+p \Delta V
$$

Foothold ideas: Energy

■ Kinds of energy (?)

- Kinetic

- Potential
- Thermal
- Chemical

■ First law of thermodynamics

- Conservation of total energy

Energy needed to
 add internal energy at constant pressure

We need to create a system schema for describing energy

■ Consider a macroscopic object.
■ Construct a system schema representation that shows the various places energy can reside in its internal structure (where "internal energy" can live).

