

Which goes with which?

1. $y=f(x+d)$
2. $y=f(x-d)$
3. $y=f(x)+d$
4. $y=f(x)-d$

5. You can't tell if you don't know the form of f.
6. You can't tell for some other reason.

Suppose a pulse with the shape $y=f(x)$ at $t=0$. Which equation correctly represents the pulse at the time t if it is moving in the positive direction with a speed v_{0} ?

$$
\begin{array}{ll}
\text { 1. } & y=f\left(x+v_{0} t\right) \\
\text { 2. } & y=f\left(x-v_{0} t\right) \\
\text { 3. } & y=f(x)+v_{0} t \\
\text { 4. } & y=f(x)-v_{0} t
\end{array}
$$

5. Something else.

If we start our beaded string off in a sinusoidal shape $y(x)=\mathrm{A} \sin (\pi x / L)$ it will oscillate with a period T_{0}. If we start it out with a shape $y(x)=A \sin (2 \pi x / L)$ with what period will it oscillate?
A. T_{0}
B. $2 T_{0}$
C. $T_{0} / 2$
D. Something else

If we start our beaded string off in a sinusoidal shape $y(x)=A \sin (\pi x / L)$ it will oscillate with a frequency f_{0}. If we start it out with a complex shape (shown) will it ever repeat itself? If yes, with what frequency?
A. f_{0}
B. $2 f_{0}$
C. $f_{0} / 2$
D. Something else

