

Which goes with which?

1. $y=f(x+d)$
2. $y=f(x-d)$
3. $y=f(x)+d$
4. $y=f(x)-d$

5. You can't tell if you don't know the form of f.
6. You can't tell for some other reason.

Suppose a pulse with the shape $y=f(x)$ at $t=0$. Which equation correctly represents the pulse at the time t if it is moving in the positive direction with a speed v_{0} ?

$$
\begin{array}{ll}
\text { 1. } & y=f\left(x+v_{0} t\right) \\
\text { 2. } & y=f\left(x-v_{0} t\right) \\
\text { 3. } & y=f(x)+v_{0} t \\
\text { 4. } & y=f(x)-v_{0} t
\end{array}
$$

5. Something else.

What happens when they would have passed each other if the other hadn't been there?

(Pass through)
3.

(Cancel)
4. Other

An elastic string (modeled as a series of beads) driven by a wheel driving one of the beads up and down sinusoidally. . The driving wheel has generated a traveling wave of amplitude 10 cm moving to the right. (The string continues on for a long way to the right as indicated by its going "out the window.") The figure shows $t=0$, when the green bead marked "II" is passing through its equilibrium point.

Which of the graphs could serve as the graph of the vertical displacement of bead II as a function of time?

An elastic string (modeled as a series of beads) driven by a wheel driving one of the beads up and down sinusoidally. . The driving wheel has generated a traveling wave of amplitude 10 cm moving to the right. (The string continues on for a long way to the right as indicated by its going "out the window.") The figure shows $t=0$, when the green bead marked "II" is passing through its equilibrium point.

Which of the graphs could serve as a graph of the vertical displacement of bead III as a function of time?

An elastic string (modeled as a series of beads) driven by a wheel driving one of the beads up and down sinusoidally. . The driving wheel has generated a traveling wave of amplitude 10 cm moving to the right. (The string continues on for a long way to the right as indicated by its going "out the window.") The figure shows $t=0$, when the green bead marked "II" is passing through its equilibrium point.

Which of the graphs could serve as a graph of the vertical displacement of the elastic string at the time $t=$ 0 as a function of position?

