If the sheets can be modeled as if they were infinitely large, and perfectly smooth (ignoring atomicity) which of the following graphs might serve as a graph of the x-component of the electric field as a function of the coordinate x along the dotted line?

If the sheets can be modeled as if they were infinitely large, and perfectly smooth (ignoring atomicity) which of the following graphs might serve as a graph of the electric potential as a function of the coordinate x along the dotted line?

What would happen to the voltage if you first disconnected the battery and then pulled the plates further apart?

- 1. The potential difference would increase.
- 2. The potential difference would decrease.
- 3. The potential difference would stay the same.

What would happen to the voltage if you stayed connected to the battery and then pulled the plates further apart?

- 1. The potential difference would increase.
- 2. The potential difference would decrease.
- 3. The potential difference would stay the same.

How do the E fields inside them rank?

1.
$$E_2 = E_3 > E_1$$

2. $E_3 > E_1 = E_2$
3. $E_2 > E_1 > E_3$
4. $E_2 > E_1 = E_3$
5. $E_1 = E_2 > E_3$
6. $E_1 = E_2 = E_3$
7. Other

How do the net charges on them rank?

1.
$$Q_2 = Q_3 > Q_1$$

2. $Q_3 > Q_1 = Q_2$
3. $Q_2 > Q_1 > Q_3$
4. $Q_2 > Q_1 = Q_3$
5. $Q_1 = Q_2 > Q_3$
6. $Q_1 = Q_2 = Q_3$
7. Other

How do the positive charges on their top plate rank?

1.
$$Q_2 = Q_3 > Q_1$$

2. $Q_3 > Q_1 = Q_2$
3. $Q_2 > Q_1 > Q_3$
4. $Q_2 > Q_1 = Q_3$
5. $Q_1 = Q_2 > Q_3$
6. $Q_1 = Q_2 = Q_3$
7. Other

How do the voltage drops across their plates rank?

1. $\Delta V_2 = \Delta V_3 > \Delta V_1$ 2. $\Delta V_3 > \Delta V_1 = \Delta V_2$ 3. $\Delta V_2 > \Delta V_1 > \Delta V_3$

4.
$$\Delta V_2 > \Delta V_1 = \Delta V_3$$

5. $\Delta V_1 = \Delta V_2 > \Delta V_3$

$$6. \quad \Delta V_1 = \Delta V_2 = \Delta V_3$$

7. Other

