Suppose we have a fixed volume, V, containing 1 mole of NO_{2} at pressure p_{0}.

Piston
Suppose all the

$$
2 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g})
$$

If T remains the same, what would happen to p ?
A. It would remain the same.
B. It would be 1.5 X as big.
C. It would double.

Heat sink T

D. It would decrease but not by half.
E. It would increase but not double.

If we pull the pins holding the piston in place, the gases would expand until the pressures are equal. What would the new volume be?
A. V_{0}
B. $2 / 3 V_{0}$
C. $3 / 2 V_{0}$
D. Between A and B
E. Between A and C

2/3/17

If we pull the pins holding the piston in place, the gases would expand until the pressures are equal. The new volume is 1.5 times as big as the original volume. The work done by the gas on the piston is:
A. Positive
B. Negative
C. Cannot be determined

Estimation: How much does enthalpy matter?

■ Consider burning one mole of glucose.
-Std. enthalpy of combustion $\Delta_{\mathrm{c}} \mathrm{H}_{298}=-2805 \mathrm{~kJ} / \mathrm{mole}$

■ How much does the internal energy change?

