\square Theme Music: John Williams, March of the Resistance (from The Force Awakens) \square Cartoon: Randall Munroe, xked

ITs... HITM. INTERESTING. MAVBE IF YOU START WITH ... NO, WAIT. HMT....YOU OLUD-

Today

- Going over the exam

■ Nernst potential
■ Electric current

Exam 1, Question 1.1

$\boldsymbol{\square} \rho \sim e^{-r / \lambda}$
■ This is like temperature in the Boltzmann distribution
$\square B$ is spread out over a larger length.

Exam 1, Question 1.2

$$
\begin{aligned}
& z=e^{-\varepsilon / k_{B} T} \\
& E_{2} / E_{0}=e^{-2 \varepsilon / /_{B} T}=z^{2}
\end{aligned}
$$

Exam 1, Question 1.3

■ I don't know!

- (But if it starts out at a low T where almost all molecules are in the ground state, it increases so A was also accepted.)

Exam 1, Question 1.4

■ Decreases

Exam 1, Question 1.5

Exam 1, Question 2A. 1

■ $\left[k_{\mathrm{C}}\right]=\mathrm{ML}^{3} / \mathrm{T}^{2} \mathrm{Q}^{2}$
■ $[E]=\mathrm{ML} / \mathrm{T}^{2} \mathrm{Q}$

Exam 1, Question 2A. 2

$\square n=1$

Exam 1, Question 2B

$$
\square V_{\mathrm{a}}=V_{\mathrm{b}}>V_{\mathrm{c}}>V_{\mathrm{d}}
$$

Exam 1, Question 2C

Exam 1, Question 3

\author{

- (Example:)
 ■ $V_{\text {liver }}=(20 \mathrm{~cm})(10 \mathrm{~cm})(5 \mathrm{~cm})$
 ■ $=1000 \mathrm{~cm}^{3}=1000 \mathrm{~mL}=1 \mathrm{~L}$
 ■ $=10 \mathrm{dL}$
}

- Dosage $=(3 \mu \mathrm{~g} / \mathrm{dL})(10 \mathrm{dL})$

■ $=30 \mu \mathrm{~g}$

Exam 1, Question 4

"The Big Square"

vector acting on an object
per charge $F=q E \longrightarrow \boldsymbol{E}$
$E=F / q$
$\Delta U=-F \Delta x$
$F=-\Delta U / \Delta x$
$\Delta V=-E \Delta x$
$E=-\Delta V / \Delta x$
$\Delta U=q \Delta V$
U
for a system
vector
at a point
scalar
at a point

Exam 1, Question 5A

Exam 1, Question 5B1

Exam 1, Question 5B2

Exam 1, Question 5C

■ Both larger
■ Spread out more evenly
$=$ More entropy

Exam 1, Question 5D

■ Microstate $=\mathrm{I}$
 - Macrostate $=$ B,C

= packet of energy
= degree of freedom
(place to put energy)

Nernst potential

- Remember diffusion
- There is a net flow from high to low concentration

Nernst potential

- What if the membrane is permeable to some ions and not others?
\square Then there is a net flow of charge
- Let's say it's permeable to Na^{+}but not Cl^{-}

Nernst potential

■ Now there's a potential difference!

■ And an electric field!
\square The electric field opposes the flow of charge, so the system reaches equilibrium

Nernst potential

■ Once again, it's energy vs. entropy!
■ Effect of energy (forces):

- Responding to electric field
\square Effect of entropy (random motion):
- Diffusion from high to low concentration

Nernst potential

- We can find the potential using the Boltzmann distribution
■ $c \downarrow 1 / c \downarrow 2=e \uparrow-(\Delta U / k \downarrow B T)$
$\square-q \Delta V / k \downarrow B T=\ln c \downarrow 1 / c \downarrow 2$
$\square \Delta V=k \downarrow B T / q \ln c \downarrow 1 / c \downarrow 2$

