- Theme Music: Duke Ellington

Take the A Train

- Cartoon: Lynn Johnson

For Better or for Worse

Foothold principles: Newton's Laws

- Newton 0:
- An object responds only to the forces it feels and only at the instant it feels them.
- Newton 1:
- An object that feels a net force of 0 keeps moving with the same velocity (which may $=0$).
- Newton 2:
- An object that is acted upon by other objects changes its velocity according to the rule

$$
\vec{a}_{A}=\vec{F}_{A}^{n e t} / m_{A}
$$

- Newton 3:
- When two objects interact the forces they exert on each other are equal and opposite.

$$
\vec{F}_{A \rightarrow B}^{t y p e}=-\vec{F}_{B \rightarrow A}^{\text {type }}
$$

Foothold ideas: Kinetic Energy and Work

- Newton's laws tell us how velocity changes. The Work-Energy theorem tells us how speed (independent of direction) changes.
- Kinetic energy $=\frac{1}{2} m v^{2}$
- Work done by a force $=F_{x} \Delta x$ or $F_{\|} \Delta r$ (part of force $\|$ to displacement)
- Work-energy theorem: $\Delta\left(\frac{1}{2} m v^{2}\right)=F_{11}^{\text {net }} \Delta r \quad$ (small step)

$$
\Delta\left(\frac{1}{2} m v^{2}\right)=\int_{i}^{f} F_{\|}^{n e t} d r \quad \text { (any size step) }
$$

Foothold ideas: Potential Energy

- The work done by some forces only depends on the change in position. Then it can be written

$$
\vec{F} \cdot \Delta \vec{r}=-\Delta U
$$

U is called a potential energy.

- For gravity, $U_{\text {gravity }}=m g h$

For a spring, $\quad U_{\text {spring }}=1 / 2 k x^{2}$
For electric force, $\quad U_{\text {electric }}=k_{C} Q_{1} Q_{2} / r_{12}$

- Potential to force: $\vec{F}=-\frac{\Delta U}{\Delta \vec{r}}=-\left(\frac{\partial U}{\partial x} \hat{i}+\frac{\partial U}{\partial y} \hat{j}+\frac{\partial U}{\partial z} \hat{k}\right)=-\vec{\nabla} U$

The force associated with a PE at a given place points "downhill" - in the direction where the PE falls the fastest.

Foothold ideas: Energy

- Kinds of energy (macro)
- Kinetic
- Potential
- Thermal
- Chemical
- Kinds of energy (micro)?
- First law of thermodynamics
- Conservation of total energy

> Energy needed to add internal energy at constant pressure (Enthalpy)

Internal energy

Thermal energy
entering

Work done on the rest of the world
$\Delta U=Q-W \longleftarrow$
$\Delta H=\Delta U+p \Delta V$

Foothold ideas: Bound states

- When two objects attract, they may form a bound state that is, they may stick together.
- If you have to do positive work to pull them apart in order to get to a separated state with $\mathrm{KE}=0$, then the original state was in a state with negative energy.

Foothold ideas:
 Inter-atomic interactions

- The interaction between atoms arises from the combination of the electrical forces of its components (electrons and nuclei).
- It can be quite complex and involve electron sharing and chemical bonds.
- The complexity arises from
the quantum character of electrons.
- Despite this complexity, a simple potential model summarizes many features of a two-atom interaction.

Foothold ideas:

Inter-atomic potentials

- The interaction between neutral atoms includes an attraction at long-range that arises from the fluctuating charge distribution in each atom; the PE behaves like $1 / r^{6}$.
- When the atoms are pressed close, they repel each other strongly; both because the +nuclei repel and because of the Pauli principle (two electrons cannot be in the same state).
- Two commonly used models are:
- The Lennard-Jones potential ($\mathrm{A} / r^{12}-\mathrm{B} / r^{6}$)
- The Morse potential (exponentials)

Foothold ideas:

Energy conservation with chemical energy

- Consider the reaction of a gas of A and B molecules that react (fully) to C and D molecules $\mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}+\mathrm{D}$
- If the initial and final states both have the two molecules far apart, $U_{\mathrm{AB}} \sim U_{\mathrm{CD}} \sim 0$.

$$
U_{\text {thermal }}^{i}+U_{\text {chemical }}^{i}=U_{\text {thermal }}^{f}+U_{\text {chemical }}^{f}
$$

$\Delta U_{\text {thermal }}+\Delta U_{\text {chemical }}=0$

Foothold ideas:
 Thermal Equilibrium \& Equipartition

- Degrees of freedom - where energy can reside in a system.
- Thermodynamic equilibrium is dynamic. Changes keep happening, but equal amounts in both directions.
- Equipartition - At equilibrium, the same energy density in all space and in all DoFs.

Foothold ideas: Enthalpy

- When a chemical reaction takes place at a constant \boldsymbol{T} and \boldsymbol{p} (especially in a gas), the gas may have to do work to "make room for itself". This affects the energy balance between the chemical energy change and the thermal energy change.
- Define enthalpy, H

$$
\Delta H=\Delta U_{\text {thermal }}+\Delta U_{\text {chemical }}+p \Delta V
$$

Foothold ideas:

Thermal Equilibrium \& Equipartition

- Degrees of freedom - places energy can reside in a system.
- Thermodynamic equilibrium is dynamic Changes keep happening, but equal amounts in both directions.
- Equipartition - At equilibrium, there is the same energy density in all space and in all DoFs - on the average.

Foothold ideas:
 Connecting micro and macro

- Microstate - A specific arrangement of energy among all the degrees of freedom of the system
- Different microstates may not be distinguishable when you are looking at many molecules - At the macro level (even as small as nm^{3}) some microstates look the same.
- Macrostate - A specification of things we care about at the macro level: pressure, temperature, concentration.

Foothold ideas: Entropy

- Entropy - an extensive* measure of how well energy is spread in an object.
- Entropy measures
- The number of microstates

$$
S=k_{B} \ln (W)
$$ in a given macrostate

- The amount that the energy of a system is spread among the various degrees of freedom
- Change in entropy upon heat flow

$$
\Delta S=\frac{Q}{T}
$$

Foothold ideas: The Second Law of Thermodynamics

- Systems composed of a large number of particles spontaneously move toward the thermodynamic (macro)state that correspond to the largest possible number of particle arrangements (microstates).
- The $2^{\text {nd }}$ law is probabilistic. Systems show fluctuations violations that get proportionately smaller as N gets large.
- Systems that are not in thermodynamic equilibrium will spontaneously transform so as to increase the entropy.
- The entropy of any particular system can decrease as long as the entropy of the rest of the universe increases more.
- The universe tends towards states of increasing chaos and uniformity. (Is this contradictory?)

Foothold ideas: Transforming energy

- Internal energy: thermal plus chemical
- Enthalpy:
ΔU internal plus amount needed to make space at constant p
- Gibbs free energy: $\Delta G=\Delta H-T \Delta S$ enthalpy minus amount associated with raising entropy of the rest of the universe due to energy dumped
- A process will go spontaneously if $\Delta G<0$.

Spontaneity...

The sign of the Gibbs Free Energy change indicates spontaneity!

$$
\Delta G<0 \rightarrow \Delta S_{\text {total }}>0 \rightarrow \text { spontaneous }
$$

$$
\Delta G>0 \rightarrow \Delta S_{\text {total }}<0 \rightarrow \text { not spontaneous }
$$

Foothold ideas:

Energy distribution

- Due to the randomness of thermal collisions, ever in (local) thermal equilibrium a range of energy is found in each degree of freedom.
- The probability of finding an energy E is proportional to the Boltzmann factor

$$
\begin{aligned}
& P(E) \propto e^{-E / k_{B} T} \quad(\text { for one DoF }) \\
& P(E) \propto e^{-E / R T} \quad(\text { for one mole })
\end{aligned}
$$

- At $300 \mathrm{~K}, k_{\mathrm{B}} T \sim 1 / 40 \mathrm{eV}$

$$
N_{\mathrm{A}} k_{\mathrm{B}} T=R T \sim 2.4 \mathrm{~kJ} / \mathrm{mol}
$$

The Boltzmann probability

- The probability of finding an additional energy ΔE in a DoF is proportional to the number of ways that that energy can be distributed, W.
- The overall probability has to be normalized so that the sum (integral) over all energies is 1 .

$$
P(\Delta E, T)=P_{0} W(\Delta E, T) e^{-\Delta E / k_{B} T}
$$

Foothold ideas:

Exponents and logarithms

- Power law: $f(x)=x^{2} \quad g(x)=A x^{7}$ a variable raised to a fixed power.
- Exponential: $f(x)=e^{x} \quad g(N)=2^{N} \quad h(z)=10^{z}$ a fixed constant raised to a variable power.
- Logarithm: the inverse of the exponential.

$$
\begin{array}{ll}
x=e^{\ln (x)} & x=\ln \left(e^{x}\right) \\
y=10^{\log (y)} & y=\log \left(10^{y}\right) \\
& 20
\end{array}
$$

$3 / 4 / 16$

$$
\begin{aligned}
& \log (2)=0.3010 \\
& \log (e)=0.4343 \\
& 2^{N}=\left(10^{0.3010}\right)^{N} \approx 10^{0.3 N} \\
& e^{x}=\left(10^{0.4343}\right)^{x} \approx 10^{0.4 x} \\
& 2^{N}=B \\
& N \log 2=\log B \Rightarrow N=\frac{\log B}{\log 2}
\end{aligned}
$$

Foothold ideas:

Charge - A hidden property of matter

- Matter is made up of two kinds of electrical matter (positive and negative) that usually cancel very precisely.
- Like charges repel, unlike charges attract.
- Bringing an unbalanced charge up to neutral matter polarizes it, so both kinds of charge attract neutral matter
- The total amount of charge (pos - neg) is constant.

Foothold ideas: Conductors and Insulators

- Insulators
- In some matter, the charges they contain are bound and cannot move around freely.
- Excess charge put onto this kind of matter tends to just sit there (like spreading peanut butter).
- Conductors
- In some matter, charges in it can move around throughout the object.
- Excess charge put onto this kind of matter redistributes itself or flows off (if there is a conducting path to ground).

Foothold idea: Coulomb's Law

- All objects attract each other with a force whose magnitude is given by

$$
\vec{F}_{q \rightarrow Q}=-\vec{F}_{Q \rightarrow q}=\frac{k_{C} q Q}{r_{q Q}^{2}} \hat{r}_{q \rightarrow Q}
$$

- k_{C} is put in to make the units come out right.

$$
k_{C}=9 \times 10^{9} \mathrm{~N}-\mathrm{m}^{2} / \mathrm{C}^{2}
$$

Foothold ideas:

Energies between charge clusters

- Atoms and molecules are made up of charges.
- The potential energy between two charges is

$$
U_{12}^{\text {elec }}=\frac{k_{c} Q_{1} Q_{2}}{r_{12}}
$$

No vectors!

- The potential energy between many charges is

$$
U_{12 \ldots N}^{\text {elec }}=\sum_{i<j=1}^{N} \frac{k_{C} Q_{i} Q_{j}}{r_{i j}}
$$

pairs!

Foothold idea: Fields

- Test particle
- We pay attention to what force it feels. We assume it does not have any affect on the source
 particles.
- Source particles
- We pay attention to the forces they exert and assume they do not move.
- Physical field
- We consider what force a test particle would feel if it were at a particular point in space and divide by its coupling strength to the force. This gives a vector at each point in space.

$$
\vec{g}=\frac{1}{m} \vec{W}_{E \rightarrow m}
$$

$$
\vec{E}=\frac{1}{q} \vec{F}_{\text {all charges } \rightarrow q}
$$

$$
V=\frac{1}{q} U_{\text {all clarges } \rightarrow \mathrm{q}}^{\text {elec }}
$$

Foothold ideas:
Electric potential energy and potential

- The potential energy between two charges is
$U_{12}^{\text {elec }}=\frac{k_{C} Q_{1} Q_{2}}{r_{12}}$
- The potential energy of many charges is

$$
U_{12 \ldots N}^{\text {elec }}=\sum_{i<j=1}^{N} \frac{k_{c} Q_{i} Q_{j}}{r_{i j}}
$$

- The potential energy added by adding a test charge q is

$$
\begin{aligned}
& \Delta U_{q}^{\text {elec }}=\sum_{i=1}^{N} \frac{k_{C} q Q_{i}}{r_{i q}}=q V \\
& \begin{array}{c}
\text { the voltage at the position of } \\
\text { the test charge }
\end{array}
\end{aligned}
$$

Units

- Gravitational field

$$
\text { units of } g=\text { Newtons } / \mathrm{kg}
$$

- Electric field units of $E=$ Newtons $/ C$
- Electric potential

$$
\text { units of } V=\text { Joules } / \mathrm{C}=\text { Volts }
$$

- Energy $=q V$ so $e \Delta V=$ the energy gained by an electron (charge $e=1.6 \times 10^{-19} \mathrm{C}$) in moving through a change of ΔV volts.

$$
1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}
$$

Representations

- Representing E
- Arrows (length shows $|E|$)
- Arrows (fixed length, color or width shows $|E|$)
- Field lines (show direction only)
- Field lines (color shows $|E|$)
- Representing V
- 1D: Graph
- 2D: Isoclines (lines of equal value)
-3 D: Equipotential surfaces (surfaces of = value)

Foothold ideas: Electric charges in materials

- The electric field inside the body of a static conductor (no moving charges) is zero.
- The entire body of a static conductor (no charges moving through it) is at the same potential.
- The average electric field in an insulator is reduced (due to the polarization of the material by the field) by a factor that is a property of the material: the dielectric constant, к. (Sometimes written in biology as ε) Since κ is the ratio of two fields, it is dimensionless.

