■ Theme Music: Jerry Lee Lewis

Whole Lotta Shakin' Goin'On

■ Cartoon: Wiley Miller Non Sequitur

Quiz 2

	1.1	1.2	2.1		2.2A	2.2 B	2.2 C
A	28\%	13\%	80\%	n	78\%	69\%	4\%
B	71\%	6\%	14\%	p	22\%	30\%	96\%
C		76\%	9\%				
D	2\%	5\%	96\%				

The Equation of the Day

Combinitoric counting

$$
C_{N, M}=\frac{N!}{(N-M)!M!}
$$

Physics 132

Suppose I have a block of matter with 4 two-state "Degrees of Freedom" (bins in which to place energy that can only hold 1 energy packet).

I have 2 packets of thermal energy. How many ways are there to distribute 2 packets?
(i.e., How many microstates
 are there?)

Suppose an isolated box of volume 2 V is divided into two equal compartments. An ideal gas occupies half of the container and the other half is empty. When the partition separating the two halves of the box is rem $C_{C_{n}}^{1}$ and the system reaches equilibrium again, how the we lse the entropy of the gas compare to the entropy or change in same stem?

1. The entropy increases
2. The entropy decreases
3. The entropy stays the same
4. There is not enough information to determine the answer

Doubling the size of the box

$■$ Consider each side of the box as being broken into M small volumes. We can put a molecule into one of these volumes in M different ways.
\square So to put N particles into the box we can put them in in MxMxM...xM (N times) different ways. $\mathrm{W}_{1}=\mathrm{M}^{\mathrm{N}}$.
\square If we have 2 boxes we can put them each into the bigger box in 2M different ways.

- So to put N particles into the double box, $W_{2}=(2 \mathrm{M})^{\mathrm{N}}=2^{\mathrm{N}} \mathrm{M}^{\mathrm{N}}=2^{\mathrm{N}} \mathrm{W}_{1}$
\square What does this say about the change in entropy when the size of the box is doubled?

Foothold ideas:
 Exponents and logarithms

■ Power law: $\quad f(x)=x^{2} \quad g(x)=A x^{7}$ a variable raised to a fixed power.
\square Exponential: $\quad f(x)=e^{x} \quad g(N)=2^{N} \quad h(z)=10^{z}$
a fixed constant raised to a variable power.
■ Logarithm: the inverse of the exponential.

$$
\begin{array}{ll}
x=e^{\ln (x)} & x=\ln \left(e^{x}\right) \\
y=10^{\log (y)} & y=\log \left(10^{y}\right)
\end{array}
$$

$$
\begin{aligned}
& \log (2)=0.3010 \\
& \log (e)=0.4343 \\
& 2^{N}=\left(10^{0.3010}\right)^{N} \approx 10^{0.3 N} \\
& e^{x}=\left(10^{0.4343}\right)^{x} \approx 10^{0.4 x} \\
& 2^{N}=B \\
& N \log 2=\log B \Rightarrow N=\frac{\log B}{\log 2}
\end{aligned}
$$

