January 29, 2016
Physics 132 Prof. E. F. Redish
■ Theme Music: Blondie Atomic

■ Cartoon: Bill Amend
FoxTrot

The Equation of the Day

Potential energy

and force

$$
F=-\frac{d U}{d x}
$$

Work energy theorem

$$
\Delta\left(\frac{1}{2} m v^{2}\right)=\int \vec{F} \cdot d \vec{r}
$$

Physics 132

Foothold ideas: Conservation of Mechanical Energy

- Mechanical energy
- The mechanical energy of a system of objects is conserved if resistive forces can be ignored.

$$
\begin{aligned}
& \Delta(K E+P E)=0 \\
& K E_{\text {initial }}+P E_{\text {initial }}=K E_{\text {final }}+P E_{\text {final }}
\end{aligned}
$$

- Thermal energy

This is why we define the PE with a negative sign.

- Resistive forces transform coherent energy of motion (energy associated with a net momentum) into thermal energy (energy associated with internal chaotic motions and no net momentum)

Foothold ideas:

Energies between charge clusters
■ Atoms and molecules are made up of charges.
\square The potential energy between two charges is

$$
U_{12}^{\text {elec }}=\frac{k_{C} Q_{1} Q_{2}}{r_{12}} \quad \text { No vectors! }
$$

- The potential energy between many charges is

$$
U_{12 \ldots N}^{e l e c}=\sum_{i<j=1}^{N} \frac{k_{C} Q_{i} Q_{j}}{r_{i j}}
$$

Just add up
all pairs!

Foothold ideas: Forces from PE

$■$ For conservative forces, PE can be defined by

$$
\vec{F} \cdot \Delta \vec{r}=-\Delta U
$$

\square If you know U, the force can be gotten from it via

$$
F_{\|}^{\text {type }}=-\frac{\Delta U_{t y p e}}{\Delta r}=-\frac{d U_{t y p e}}{d r}
$$

- In more than 1D need to use the gradient

$$
\vec{F}^{\text {bpe }}=-\left(\frac{\partial U_{t p p e}}{\partial x} \hat{i}+\frac{\partial U_{\text {tppe }}}{\partial y} \hat{j}+\frac{\partial U_{\text {tppe }}}{\partial z} \hat{k}\right)=-\vec{\nabla} U_{t p p e}
$$

$■$ The force always points down the PE hill.

The extra potential energy from adding Q as a function of position r of charge Q

(2q) $\longrightarrow r$

$$
\Delta U=k_{C} Q \sum_{i=1}^{3} \frac{q_{i}}{r_{Q \rightarrow q_{i}}}=k_{C} Q\left(\frac{q_{1}}{r_{1}}+\frac{q_{2}}{r_{2}}+\frac{q_{3}}{r_{3}}\right)
$$

Foothold ideas: Bound states

- When two objects attract, they may form a bound state that is, they may stick together.
- If you have to do positive work to pull them apart in order to get to a separated state with $\mathrm{KE}=0$, then the original state was in a state with negative energy.

The Gauss Gun: A classical analog of an exothermic reaction

Sketch

1. What the potential energy curve must look like between the magnet and a metal sphere as a function of distance.
(Hint: think about the WE Θ)
2. Energy bar graphs that show the initial and final energies of each of the 4 spheres (when the moving one is far from the magnet)

Energy conservation with chemical reactions: 1

■ Consider the collision of two molecules in isolation $\quad \mathrm{A}+\mathrm{B} \rightarrow \mathrm{A}+\mathrm{B}$

$$
K_{A}+K_{B}+U_{A B}=\text { constant }
$$

\square If the initial and final states both have the two molecules far apart, $U_{\mathrm{AB}} \sim 0$.

$$
K_{A}+K_{B}=\text { constant }
$$

Energy conservation with chemical reactions: 2

\square Consider the reaction of two molecules in isolation $\quad \mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}+\mathrm{D}$
$\left(K_{A}+E_{A}\right)+\left(K_{B}+E_{B}\right)+U_{A B}=\left(K_{C}+E_{C}\right)+\left(K_{D}+E_{D}\right)+U_{C D}$
\square If the initial and final states both have the two molecules far apart, $U_{\mathrm{AB}} \sim U_{\mathrm{CD}} \sim 0$.

$$
\left(K_{A}+E_{A}\right)+\left(K_{B}+E_{B}\right)=\left(K_{C}+E_{C}\right)+\left(K_{D}+E_{D}\right)
$$

Note: The " E "s here are molecular internal energies and are negative since the molecules are bound. The (positive)

1. bond energies from chemistry are given by $\mathcal{E}=-E>0$.
