Two large parallel sheets of charge are separated by a distance d, small compared to the size of the sheets. The distance d is small enough that the sheets can be treated as if they were infinite in extent.

Where do you expect the E field to point at the position A ?

1. It should point to the left.
2. It should be essentially 0 .
3. It should point to the right.

Two large parallel sheets of charge are separated by a distance d, small compared to the size of the sheets. The distance d is small enough that the sheets can be treated as if they were infinite in extent.

Where do you expect the E field to point at the position B ?

1. It should point to the left.
2. It should be essentially 0 .
3. It should point to the right.

Two large parallel sheets of charge are separated by a distance d, small compared to the size of the sheets. The distance d is small enough that the sheets can be treated as if they were infinite in extent.

Where do you expect the E field to point at the position C ?

1. It should point to the left.
2. It should be essentially 0 .
3. It should point to the right.

If the sheets can be treated as if they were infinitely large, and perfectly smooth (ignoring atomicity) which of the following graphs might serve as a graph of the x-component of the electric field as a function of the coordinate x along the dotted line?
(1)

(4)

(7)

3/2/16

(5)

(8)

Physics 132

If the sheets can be treated as if they were infinitely large, and perfectly smooth (ignoring atomicity) which of the following graphs might serve as a graph of the electric potential as a function of the coordinate x along the dotted line?

(4)

(5)

(8)

Physics 132

