Consider the electric field near a large sheet of uniform positive charge, σ. What direction does it point? How do you know?

1. up
2. down
3. left
4. right

5. None of these

Consider the electric field near a large sheet of uniform charge, σ. Which of these has the right dimensions?

$$
([\sigma]=\mathrm{Q} / \mathrm{A})
$$

$$
\text { 1. } E=2 \pi k_{C} \sigma / d^{3}
$$

$$
\text { 2. } E=2 \pi k_{C} \sigma / d^{2}
$$

$$
\text { 3. } E=2 \pi k_{c} \sigma / d
$$

$$
\text { 4. } E=2 \pi k_{C} \sigma
$$

5. None of these

Consider the electric potential near a large sheet of uniform charge, σ. If $\sigma>0$, how does the potential change as you go farther away from the sheet?

1. Increases
2. Decreases
3. Stays the same
4. You can't tell without more
 information

A positive charge might be placed near a uniform sheet of charge at one of three spots in a region where there is a uniform electric field. How do the electric potential, V, on the charge at positions 1, 2, and 3 compare?

1. V is greatest at 1
2. V is greatest at 2
3. V is greatest at 3
4. V is 0 at all 3 spots
5. $\quad V$ is $=$ at all 3 spots
 but not $=0$.

Two large parallel sheets of charge are separated by a distance d, small compared to the size of the sheets. The distance d is small enough that the sheets can be treated as if they were infinite in extent.

Where do you expect the E field to point at the position A ?

1. It should point to the left.
2. It should be essentially 0 .
3. It should point to the right.

