Suppose I have a block of matter with 4 two-state "Degrees of Freedom" (bins in which to place energy that can only hold 1 energy packet).

I have 2 packets of thermal energy. How many ways are there to distribute 2 packets?
(i.e., How many microstates
 are there?)

Suppose I have two blocks of matter, each with 4 two-state "Degrees of Freedom" (bins in which to place energy that can only hold 1 energy packet).

I have 2 packets of thermal energy.
How many ways are there
to distribute 2 packets among both blocks compared to the number of ways to distribute 2 packets to one block?

1. Twice as high
2. Four times as high
3. Eight times as high

4. More than eight times as high $C_{N, M}=\frac{N!}{(N-M)!M!}$
5. Not enough information

Suppose I have two blocks of matter, each with 4 two-state "Degrees of Freedom" (bins in which to place energy that can only hold 1 energy packet).

I have 4 packets of thermal energy.
How many ways are there to
distribute the 2 packets to each block compared to the number of ways to distribute the 4 packets to one block ?

1. Twice as many
2. Four times as many
3. Sixteen times as many
4. More than sixteen times as many

$$
C_{N, M}=\frac{N!}{(N-M)!M!}
$$

5. There is not enough information to tell
