Suppose I have a block of matter with 8 two-state "Degrees of Freedom" (bins in which to place energy that can only hold 1 energy packet).

I have 2 packets of thermal energy.
 How many ways are there to distribute 2 packets?
(i.e., How many microstates are there?)

1.	16
2.	15
3.	8
4.	64
5.	56

6. 32

7. 15
8. 28
9. Something else
10. It cannot be determined

Suppose I have a block of matter with N two-state "Degrees of Freedom" (bins in which to place energy that can only hold 1 energy packet).

I have 2 packets of thermal energy. How many ways are there to distribute 2 packets?

1. 2 N
2. $2 \mathrm{~N}-1$
3. N^{2}
4. $\mathrm{N}(\mathrm{N}-1)$
5. $\mathrm{N}^{2} / 2$
6. $\mathrm{N}(\mathrm{N}-1) / 2$
7. Something else
8. It cannot be determined

Suppose I have a block of matter with 4 two-state "Degrees of Freedom" (bins in which to place energy that can only hold 1 energy packet).

I have 2 packets of thermal energy. How many ways are there to distribute 2 packets?
(i.e., How many microstates
 are there?)

Suppose I have two blocks of matter, each with 4 two-state "Degrees of Freedom" (bins in which to place energy that can only hold 1 energy packet).

I have 2 packets of thermal energy.
How many ways are there
to distribute 2 packets among both blocks compared to the number of ways to distribute 2 packets to one block?

1. Twice as high
2. Four times as high
3. Eight times as high
4. More than eight times as high

Count!
5. Not enough information

