### **Outline**

- Entropy
- Second Law of Thermodynamics



Example of an active cell (from Jacobsen UNC (2013))

Losert Office hours next week:

**THURSDAY 1-2pm Rm 0208 (Course Center)** 

Suppose I have two blocks of matter A and B touching each other. Suppose each block has 4 "Degrees of Freedom" (bins in which to place energy)

I have 4 packets of thermal energy.

How many ways are there to distribute 4 packets to either block A or B?

- 1. 1
- 2. 2
- 3. 3
- 4. 4
- 5. 5
- 6. 6
- 7. 7
- 8. 8
- 9. More than 8

- The number of ways to distribute 4 packets into 8 bins can be calculated.
- Need the number you can google it:

"8 choose 4"

Number of bins

Number of packets

## Simple System: A 6 atom gas









How many ways to spread 4 packets of thermal energy

- 1. "6 choose 4"
- 2. "12 choose 4"
- 3. "18 choose 4"
- 4. Less than "6 choose 4"
- 5. More than "18 choose 4"
- 6. Not enough information



Two touching 6 atom gases

Again, 4 packets of thermal energy for EACH so 8 packets total. The number of possible microstates compared to a single 6 atom gas is

- Twice as high
- 2. Four times as high
- 3. Eight times as high
- 4. More than eight times as high
- 5. Not enough information



# A more complicated system: Droplet with 6 water molecules



#### Macroscale energy of droplet

- KE of droplet motion
- PE (gravity)

#### Internal energy of droplet

- Thermal:
  - KE of each H<sub>2</sub>0 (incoherent motion)
  - PE of H<sub>2</sub>0 interaction ◆
  - Internal energy of each molecule
    - > KE of each atom
    - ➤ PE of atomic interactions ◆

#### Chemical

- PE due to electron-electron and electron nucleus interactions in molecule
- KE of electrons

# Two systems touch and exchange heat – they come into thermal equilibrium



## Now consider the "joint" system with 6 atoms and 6 water molecules. We put in 8 packets of thermal energy



- 1. They are more likely to be in "gas"
- They are more likely to be in water
- 3. They are equally likely to be in any atom/ molecule

  Physics 132

# More thermal energy packets are in the water molecules

- 1. Water is hotter than gas
- 2. Water is colder than gas
- 3. Water is at the same temperature as gas