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Foothold Ideas Since Midterm 2 
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Foothold principles:  
Superposition of Mechanical waves 

 Superposition: when two or more waves (or 
pulses) overlap, the result is that each point 
displaces by the sum of the displacements it would 
have from the individual pulses. (signs matter) 
 Beats: When sinusoidal waves of different frequencies 

travel in the same direction, you get variations in 
amplitude (when you fix either space or time) that 
happen at a rate that depends on the difference of the 
frequencies. 

 Standing waves: When sinusoidal waves of the same 
frequency travel in opposite directions, you get a 
stationary oscillating pattern with fixed nodes. 
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Standing waves:  Sinusoidal Waves, same 
frequency, going in opposite directions 

 

 Using trig identities (sc+cs…) we can show 

 

 

For each point on the string labeled “x” it 
oscillates with an amplitude that depends  
on where it is — but all parts of the string go 
up and down together. 

 

( , ) sin( ) sin( )y x t A kx t A kx t    

( , ) 2 sin( )cos( )y x t A kx t
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Standing Waves 
 Some points in this pattern (values of x for 

which kx = nπ) are always 0.  (NODES) 

 To wiggle like this (all parts oscillating 
together in a “standing wave”) we need to 
have the end fixed 

 

 

 We still have 
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Light 
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Light: Three models 
 Newton’s particle model (rays) 

– Models light as bits of energy traveling very fast in 
straight lines. Each bit has a color. Intensity is the 
number of bits you get. 

 Huygens’s/Maxwell wave model 

– Models light at waves (transverse EM waves). Color 
determined by frequency, intensity by square of a total 
oscillating amplitude. (Allows for cancellation – 
interference.) 

 Einstein’s photon model 

– Models light as “wavicles” == quantum particles  
whose energy is determined by frequency and that can 
interferer with themselves. 
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Light is not the only phenomenon in nature that 
requires multiple models 

Proteins are an example in biology 
where multiple models exist 

Each model highlights different 
properties of the protein 
- Hydrophobic character 
- Folding property   



Einstein’s photon model 
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Foothold Ideas: 
The Photon Model 

 When it interacts with matter, light behaves 
as if it consisted of packets (photons ) that 
carry both energy and momentum according 
to: 
 

 

    with hc = 1234 eV-nm. 

– These equations are somewhat peculiar.  The 
left side of the equations look like particle 
properties and the right side like wave 
properties. 

hc E h
E hf p

c 
   
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Line Spectra 

 When energy is added to gases  
of pure atoms or molecules by a spark,  
they give off light,  
but not a continuous spectrum. 

 They emit light of a number of  
specific colors — line spectra. 

 The positions of the lines are characteristic 
of the particular atoms or molecules. 
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Line Spectra 
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Foothold Ideas: 
Light interacting with Matter 

 Atoms and molecules naturally exist in 
states having specified energies.  EM 
radiation can be absorbed or emitted by 
these atoms and molecules.  

 When light interacts with matter, both 
energy and momentum are conserved. 

 The energy of radiation either emitted  
or absorbed therefore corresponds to the 
difference of the energies of states. 
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Energy Level Diagrams 
E 

Absorption Emission 

E0 

E1 

E1 = hf + E0 
Ei = hf + Ef 

Ei 

Ef 



Newton’s Particle Model (Rays) 
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Foothold Ideas 1: 
Light as Rays - The Physics 

 Through empty space (or ~air)  
light travels in straight lines. 

 Each point on an object scatters light,  
spraying it off in all directions. 

 A polished surface reflects rays back again 
according to the rule:  The angle of 
incidence equals the angle of reflection. 
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Foothold Ideas 2: 
Light as Rays - the perception 

 We only see something when light  
coming  from it enters our eyes. 

 Our eyes identify a point as being  
on an object when rays traced back 
converge at that point. 
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Foothold Ideas 3: 
Mirrors 

 For most objects, light scatters in all directions.   
For some objects (mirrors) light scatters from them 
in controlled directions. 

 

 

 A polished surface reflects rays back again according 
to the rule:  The angle of incidence equals the angle 
of reflection. 

 

 

mirror ordinary object 

    
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Kinds of Images: Virtual 
 In the case of the previous slide, the rays  

seen by the eye do not actually meet at a point – but 
the brain, only knowing the direction of the ray, 
assumes it came directly form an object. 

 When the rays seen by the eye do not meet,  
but the brain assumes they do,  
the image is called virtual. 

 If a screen is put at the position of the virtual image, 
there are no rays there so nothing  
will be seen on the screen. 
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Kinds of Images: Real 

 In the case of the previous slide, the rays  
seen by the eye do in fact converge at a point. 

 When the rays seen by the eye do meet,  
the image is called real. 

 If a screen is put at the real image, the rays  
will scatter in all directions and an image  
can be seen on the screen, just as if it were a 
real object. 
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A Spherical Mirror: Central Rays 

center 

of sphere 

All rays satisfy 

the “angle of incidence 

= angle of reflection” 

measured to the normal 

to the surface 

All rays through  

the center strike  

the mirror perpendicular 

to the surface and  

bounce back  

along their 

incoming path. 

A few rays are 

easy to figure out 

where they go. 
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A Spherical Mirror: Parallel Rays 

center 

of sphere 

A few rays are 

easy to figure out 

where they go. 

All rays parallel to  

and near an axis of  

the sphere reflect through 

a single point on the  

axis (the focal point) 

All rays satisfy 

the “angle of incidence 

= angle of reflection” 

measured to the normal 

to the surface 
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Images in a Spherical Mirror: 1 
Physical 

center of sphere 

focal point 
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Unifying Equation for Mirrors 
 If we treat our mirror quantities as “signed” and let the 

signs carry directional information, we can unify all the 
situations in a single set of equations. 
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Huygen’s/Maxwell Wave Model 
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The third model for light:  
Electromagnetic wave 

 Light is an oscillating  
electromagnetic wave. (Long story) 

 A “close-up” of a ray: a plane wave 
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Foothold wave ideas: 
Huygens’ Model 

 The critical structure for waves are the lines or 
surfaces of equal phase: wavefronts. 

 Each point on the surface of a wavefront acts as a 
point source for outgoing spherical waves 
(wavelets).   

 The sum of the wavelets produces a new 
wavefront. 

 The waves are slower in a denser medium. 

 We can even make rays – sort of. 



Phase difference and path difference 

 Our two waves  
from different  
sources have a phase difference,  
because we are different distances  
from the two sources. 

 The phase difference depends on the path 
difference: 
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y = Asin(kr1 -wt)+ Asin(kr2 -wt)

y = Asin(f1 -wt)+ Asin(f2 -wt)

f1 -f2

f1 -f2 = kr1 - kr2 = k r1 - r2( ) = kDr = 2p
Dr

l



Superposition from two sources 

 If we are at a particular point in space and two 
traveling waves, y = Asin(kr – ωt), reach us 
coming from different starting points, we are at 
different “r” values for the two waves. 

 The result looks like the sum of two waves with 
different phases: 

 

y = Asin(kr1 -wt)+ Asin(kr2 -wt)

y = Asin(f1 -wt)+ Asin(f2 -wt)

r1 r2 
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Diffraction 

 Every bit of the 
interior of the slit acts 
as a source of 
outgoing spherical 
Huygens’ wavelets. 

 The outgoing wavelets 
from one part of the 
slit can interferer with 
the wavelets from 
another part of the 
slit. 
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  

q d/2 

Δr 

d 

When the distance 

traveled by the wavelet 

from the middle of the slit 

is half a wavelength greater 

than the distance traveled 

by the wavelet from the  

top of the slit 

every wavelet from  

the top half of the slit 

has a canceling wavelet 

from the bottom half  

of the slit. 

 

The result is no intensity 

at that angle. 



Connecting the wave and photon 
model of light 
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Foothold Ideas: 
The Probability Framework 

 It’s clear that both the wave model and the 
photon have an element of truth. Here’s the 
way we reconcile it: 

– Maxwell’s equations and the wave theory of 
light yield a function – the electric field – whose 
square (the intensity of the light) is proportional 
to the probability of finding a photon. 

– No theory of the exact propagation of individual 
photons exist. This is the best we can do: a 
theory of the probability function for photons.  
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A useful analogy:  Connecting the wave vs 
particle model for electrons 

 Quantum mechanics gives us a wave 
function of an electron, whose square gives 
us the probability of finding an electron 

– Schrödinger’s equation is the wave theory of 
matter.  It’s solution yields the wave function 
whose square is proportional to the probability 
of finding an electron. 

– No theory of the exact propagation of individual 
electrons exist. This is the best we can do: a 
theory of the probability function for electrons.  


