The green interference fringes shown in the picture on the right are produced on a screen by putting a green laser beam with a wavelength of 550 nm through two identical slits. If the screen is 4 m from the slits, can the spacing between the slits be calculated?

1. Yes

2. No

The green interference fringes shown in the picture on the right are produced on a screen by putting a green laser beam with a wavelength of 550 nm through two identical slits. If the screen is 4 m from the slits, can **you** find the spacing between the slits?

1. Yes

2. No

If the wavelength were reduced, what would happen to pattern on the screen?

- 1. It would not change.
- 2. It would squeeze closer together.
- 3. It would spread further apart.
- 4. You can't tell from the information given.

If the screen were moved closer to the slits, what would happen to pattern on the screen?

- 1. It would not change.
- 2. It would squeeze closer together.
- 3. It would spread further apart.
- 4. You can't tell from the information given.

The figure shows what happens if you put white light through the same slit-screen system. Why are the different colors separated on either side of the center?

A laser beam passes through a double-slit forming an interference pattern. If we cover one slit with a glass plate, the phase of the wave passing through the glass changes by 180° from what it would have been without the glass. How is the interference pattern changed?

- 1. The pattern of alternating light and dark spots disappears leaving a single, wide, bright spot.
- 2. The pattern of alternating light and dark spots disappears leaving the screen dark.
- 3. The pattern of bright spots spreads out.
- 4. The pattern of bright spots gets closer together.
- 5. The pattern reverses itself, bright becoming dark and vice versa.

