Three identical charges are lined up in a row. If we compare the electric force charge q_1 exerts on charge q_3 ($F_{1\rightarrow 3}$) to the force q_2 exerts on charge q_3 ($F_{2\rightarrow 3}$)

- 1. $F_{1\rightarrow 3}$ is twice as big as $F_{2\rightarrow 3}$.
- 2. $F_{1\rightarrow 3}$ is half as big as $F_{2\rightarrow 3}$.
- 3. $F_{1\rightarrow 3}$ is more than twice as big as $F_{2\rightarrow 3}$.
- 4. $F_{1\rightarrow 3}$ is less than half as big as $F_{2\rightarrow 3}$.
- 5. $F_{1\rightarrow 3}$ doesn't affect q_3 at all since q_2 is in the way.

In the figure are shown four arrangements of charge. Each charge has the same magnitude, but some are + and some are -.

All distances are to the same scale. In which would the magnitude of the force felt by a positive test charge placed at P be the largest?

- 1. A
- 2. B
- 3. C
- 4. D
- 5. You can't tell.

Two small objects each with a net charge of Q (positive) exert a force of magnitude F on each other. We replace one of the objects with another whose net charge is 4Q. The original magnitude of the force on the Q charge was F; what is the magnitude of the force on the Q now?

- 1. 16F
- 2. 4F
- 3. F
- 4. F/4
- 5. other

Two small objects each with a net charge of Q (positive) exert a force of magnitude F on each other. We replace one of the objects with another whose net charge is 4Q. The original magnitude of the force on the Q charge was F; what is the magnitude of the force on the 4Q now?

- 1. 16F
- 2. 4F
- 3. F
- 4. F/4
- 5. other

In the original state we assumed Q was positive If the symbol Q were taken to have a negative value, how would the forces change compared to the original state?

- 1. Would stay the same
- 2. Both would reverse
- 3. Only the left force would reverse
- 4. Only the right force would reverse
- 5. Something else

A test charge (labeled q) is placed in a situation in which it feels the electrical force from three other charges (of opposite sign to it) labeled A, B, and C. (The charges are on a uniform grid as shown and the positions are to scale.)

Which of the following combinations of forces is the greatest?

1.
$$\vec{F}_{A o q}$$

$$2. \quad \vec{F}_{B \to q} + \vec{F}_{C \to q}$$

3.
$$\vec{F}_{A \rightarrow q} + \vec{F}_{B \rightarrow q} + \vec{F}_{C \rightarrow q}$$

4. There is not enough information to tell.