November 14, 2016 Physics 131 Prof. E. F. Redish
\square Theme Music: Bruce Springsteen Working on a Dream
■ Cartoon: Bill Watterson Calvin \& Hobbes

In many of your science classes you talk about "energy."

What is it?

Energy

■ N2 tells us that a force can change an object' s velocity in one of two ways:

- It can change the speed
- It can change the direction

■ Analyzing changes in speed leads us to study energy.

- Analyzing changes in direction leads us to study rotations.

Kinetic Energy and Work

■ Consider an object moving along a line feeling a constant net force, $F^{\text {net }}$. When it moves a distance Δx, how much does its speed change?

$$
\begin{aligned}
& a=F^{n e t} / m \\
& \frac{\Delta v}{\Delta t}=\frac{F^{n e t}}{m} \\
& \frac{\Delta v}{\Delta t} \Delta x=\frac{F^{n e t}}{m} \Delta x
\end{aligned}
$$

$$
\Delta v \frac{\Delta x}{\Delta t}=\frac{F^{n e t} \Delta x}{m}
$$

$$
\begin{aligned}
& \Delta v \frac{\Delta x}{\Delta t}=\frac{F^{n e t} \Delta x}{m} \\
& \langle v\rangle \Delta v=\frac{F^{n e t} \Delta x}{m} \\
& \frac{v_{i}+v_{f}}{2}\left(v_{f}-v_{i}\right)=\frac{F^{n e t} \Delta x}{m} \\
& \frac{1}{2}\left(v_{f}^{2}-v_{i}^{2}\right)=\frac{F^{n e t} \Delta x}{m} \\
& \frac{1}{2} m\left(v_{f}^{2}-v_{i}^{2}\right)=F^{n e t} \Delta x
\end{aligned}
$$

Definitions:

Kinetic energy

$$
=\frac{1}{2} m v^{2}
$$

Work done
by a force F

$$
=F \Delta x
$$

Result:
$\Delta\left(\frac{1}{2} m v^{2}\right)=F^{n e t} \Delta x$
The Work-Energy Theorem

Foothold ideas:

Kinetic Energy and Work

■ Newton's laws tell us how velocity changes.
The Work-Energy theorem tells us how speed changes (independent of direction).
■ Kinetic energy $=\frac{1}{2} m v^{2}$
\square Work done by a force $=F_{x} \Delta x$ or $F_{\|} \Delta r$ ($F_{\|}=$the part of force $\|$to displacement)
\square Work-energy theorem: $\quad \Delta\left(\frac{1}{2} m v^{2}\right)=F_{\|}^{n e t} \Delta r$

Work in another direction: The dot product

■ Suppose we are moving along a line, but the force we are interested in in pointed in another direction? (How can this happen?)
\square Only the part of the force in the direction of the motion counts to change the speed (energy).

Dot products in general

$F_{\|} \Delta r \equiv \vec{F} \cdot \Delta \vec{r}$
$\vec{F} \cdot \Delta \vec{r}=F \cos \theta \Delta r$
In general, for any two vectors that have an angle θ between them, the dot product is defined to be

$$
\begin{aligned}
& \vec{a} \cdot \vec{b}=a b \cos \theta \\
& \vec{a} \cdot \vec{b}=a_{x} b_{x}+a_{y} b_{y}
\end{aligned}
$$

The dot product is a scalar. Its value does not depend on the coordinate system we select.

