October 17, $2016 \quad$ Physics $131 \quad$ Prof. E. F. Redish

■Theme Music: U2

Electric Storm
■Cartoon: Pat Brady Rose is Rose

Foothold ideas:
Charge - A hidden property of matter

- Matter is made up of two kinds of electrical matter (positive and negative) that usually cancel very precisely.
$■$ Like charges repel, unlike charges attract.
■ Bringing an unbalanced charge up to neutral matter polarizes it, so both kinds of charge attract neutral matter
\square The total amount of charge (pos - neg) is constant.

Foothold ideas: Conductors and Insulators

 - Insulators- In some matter, the charges they contain are bound and cannot move around freely.
- Excess charge put onto this kind of matter tends to just sit there (like spreading peanut butter).
■ Conductors
- In some matter, charges in it can move around throughout the object.
- Excess charge put onto this kind of matter redistributes itself or flows off (if there is a conducting path to ground).

Making Sense of Coulomb's Law

■ Changing the test charge
■ Changing the source charge

- Changing the distance
- Specifying the direction

■ Interpret the sign

$$
\vec{F}_{Q \rightarrow q}=-\vec{F}_{q \rightarrow Q}=\frac{k_{C} q Q}{R^{2}} \hat{r}_{Q \rightarrow q}
$$

?? Which is the test charge and which is the source charge??

Adding forces for many charges!

$$
\begin{gathered}
\vec{F}_{q}=\vec{F}_{Q_{1} \rightarrow q}+\vec{F}_{Q_{2} \rightarrow q}+\vec{F}_{Q_{3} \rightarrow q}+\vec{F}_{Q_{4} \rightarrow q}+\ldots \\
\vec{F}_{q}=\frac{k_{c} q Q_{Q_{1}}}{r_{1}^{2}} \widehat{r}_{1}+\frac{k_{c} q Q_{2}}{r_{2}^{2}} \widehat{r}_{2}+\frac{k_{c} q Q_{3}}{r_{3}^{2}} \widehat{r}_{3}+\frac{k_{c} q Q_{4}}{r_{4}^{2}} \widehat{r}_{4}+\ldots
\end{gathered}
$$

where

$$
\begin{array}{ll}
r_{1}=\text { distance from } Q_{1} \text { to } q & \hat{r}_{1}=\text { direction from } Q_{1} \text { to } q \text { (mag. 1, no units!) } \\
r_{2}=\text { distance from } Q_{2} \text { to } q & \hat{r}_{2}=\text { direction from } Q_{2} \text { to } q \text { (mag. 1, no units!) }
\end{array}
$$

Review of Vectors (2-dimensional coordinates)

■ We have 2 directions to specify. We must

- Choose a reference point (origin)
- Pick 2 perpendicular axes (x and y)
- Choose a scale
\square We specify our x and y directions by drawing little arrows of unit length in their positive direction. \hat{i}, \hat{j}
■ A force vector is written

$$
\vec{F}=F_{x} \hat{i}+F_{y} \hat{j}=\left(F_{x}, F_{y}\right)
$$

Adding Forces

\square We define the sum of two vectors as if they were successive displacements.

$$
\vec{F}=\vec{F}_{1}+\vec{F}_{2}
$$

Adding Vectors: Methods

■ There are 3 mathematical ways to add vectors

head to tail

parallelogram rule

add components (may use trig)

Trig review

- The ratios of a triangle's sides only depend on θ.
$-\sin (\theta)=$ opposite/hypotenuse
$-\cos (\theta)=$ adjacent/hypotenuse
$-\tan (\theta)=$ opposite/adjacent.

Vectors with trig by components

