

Equations in physics (science) are NOT the same as equations in math!
■ Many of the symbols we are NOT NUMBERS but are created from measurements.
\square How this is done is called the DIMENSIONALITY of the quantity.
■ We have three different kinds of measurements that we use:

- A measurement with a ruler (a length)
- A measurement with a clock (a time)
- A measurement with a scale (a mass)

When we ask a symbol: "What measurements are you made of and how?" we will indicate it by using double square brackets:

$$
\begin{aligned}
& \llbracket \Delta x \rrbracket= \\
& \llbracket \Delta t \rrbracket= \\
& \llbracket m \rrbracket=\text { 回 }
\end{aligned}
$$

A displacement is found using a rul (making a Length measurement - L
A time interval is found using a clo (making a time measurement - T)

A mass is found using a scale (making a mass measurement - M

When we combine measurements

 we express is by showing how those measurements are combined$$
\begin{aligned}
& \text { measurement by a time measurem } \\
& \llbracket a \rrbracket=(\omega) \\
& \text { = (D) } \\
& \text { An acceleration is found by divid } \\
& \text { velocity measurement by a time } \\
& \text { measurement } \\
& \text { Measurements, being a number } \\
& \text { with a unit, combine like algebrai } \\
& \text { symbols when combined. }
\end{aligned}
$$

When we have correct equations

for symbols that we know
it can tell us what measurements were combined to create that symbol.

$$
F=m a \quad \text { so } \quad \llbracket F \rrbracket=\llbracket m a \rrbracket
$$

So

$$
\llbracket F \rrbracket=\llbracket m \rrbracket \llbracket a \rrbracket=\overline{\operatorname{\sigma a}}(\mathrm{O}))
$$

Since we don't want to be always drawing little scales, rulers, and clocks, we write them as "M", "L", and "T" but be careful not to confuse them with algebraic symbols that have values!
(Also, from laziness, we only write single instead of double brackets.)

So read these as follows:

$$
\begin{aligned}
& {[v]=\mathrm{L} / \mathrm{T}} \\
& {[F]=\mathrm{ML} / \mathrm{T}^{2}}
\end{aligned}
$$

To get a velocity, divide a ruler measurement by a clock measurement

To get a force, multiply a scale measurement by a ruler measurement and divide by two clock measurements

Keep separate your statement of what measurement tools you are using (dimensional analysis) from your actual values!

$■$ These are not numbers!

