September 16, 2016 Physics 131 Prof. E. F. Redish
■ Theme Music: Acceleration Waltz Johann Strauss II
■ Cartoon: Johnny Hart BC

Foothold ideas:
 Acceleration

- Average acceleration is defined by

$$
\langle\vec{a}\rangle=\frac{\Delta \vec{v}}{\Delta t}=\frac{\text { change in velocity }}{\text { time it took to do it }} \begin{aligned}
& \text { Note: an average } \\
& \text { acceleration goes } \\
& \text { with a time interval. }
\end{aligned}
$$

- Instantaneous acceleration is what we get when we consider a very small time interval (compared to times we care about)

$$
\vec{a}=\frac{d \vec{v}}{d t}
$$

Note: an instantaneous
acceleration goes with
a specific time.

Technical term alert!

- Note that in physics we use the term "acceleration" in a technically defined way:
- "acceleration" = changing velocity
- The object may be speeding up or slowing down or keeping the same speed and changing direction.
We still say "it is accelerating."
- In common speech
"acceleration" = speeding up,
"deceleration" = slowing down, and
"turning"=changing direction.
- How many (physics) accelerators are there on your car?

Uniformly changing motion

- If an object moves so that it changes its velocity by the same amount in each unit of time, we say it is in uniformly accelerated motion.
- This means the average acceleration will be the same no matter what interval of time we choose.

What have we learned? Representations \& consistency

- Position
$\hat{r}=x \hat{i}+y \hat{j}$
(where x and y are signed lengths)
- Velocity

$$
\langle\vec{v}\rangle=\frac{\Delta \vec{r}}{\Delta t} \quad \vec{v}=\frac{d \vec{r}}{d t}
$$

- Acceleration

$$
\langle\vec{a}\rangle=\frac{\Delta \vec{v}}{\Delta t} \quad \vec{a}=\frac{d \vec{v}}{d t}
$$

- Seeing from the motion
- Seeing consistency (graphs \& equations)

Example:
 Calculating with acceleration

- In The Fellowship of the Ring, the hobbit Peregrine Took (Pippin for short) drops a rock into a well while the travelers are in the caves of Moria. This wakes a Balrog (a bad thing) and causes all kinds of trouble. Pippin heard the rock hit the water 7.5 s after he dropped it. Assuming that the rock fell with a constant acceleration of $10 \mathrm{~m} / \mathrm{s}^{2}$, how deep is the well?

Some questions

■ What's "the story" of the problem?

- What principles/equations do you know that might be relevant?
■ What assumptions might we make to create a solvable first model?
■ Give names to the relevant parameters and variables.
- Of the variables and parameters that appear in your equation, which do you know?
■ How many unknowns do you have?
${ }_{9 / 161}$ - How many equations do you have?

