September 12, $2016 \quad$ Physics $131 \quad$ Prof. E. F. Redish HERMAN ${ }^{\circ}$
■ Theme Music: Pfish
Fast enough for you

- Cartoon: Jim Unger Herman

"How could I have been doing 70 miles an hour when l've only been driving for ten minutes?"

The Equation of the Day

Kinematic definitions

$$
\begin{aligned}
\langle v\rangle=\frac{\Delta x}{\Delta t} & \langle a\rangle=\frac{\Delta v}{\Delta t} \\
v=\frac{d x}{d t} & a=\frac{d v}{d t}
\end{aligned}
$$

Graphing velocity:

Figuring it out from the position slope

- You can figure out the velocity graph from the position graph using

$$
\langle v\rangle=\frac{\Delta x}{\Delta t} \quad \Delta x=\langle v\rangle \Delta t
$$

Position to velocity

Ratio of change in
$v(t)=\frac{d x}{d t}$
position that takes
place to the (small)
time interval
Difference of two positions at two
$v(t)=\frac{x(t+\Delta t / 2)-x(t-\Delta t / 2)}{\text { Physics 131 } \Delta t}$

Graphing Position

- Graphs for the eye vs. graphs for the mind.
- Describe where something is in terms of its coordinate at a given time.
- Choose origin
- Choose axes
- Choose scale
- Set scales on graph
- Take data from video
- Construct different graphs
- Fit the graphs with math functions

Graphing Velocity: Figuring it out from the motion

- An object in uniform motion has constant velocity.
- This means the instantaneous velocity does not change with time. Its graph is a horizontal line.
- You can make sense of this by putting your mind in "velocity mode" and running a mental movie.

What have we learned? Representations and consistency

- Visualizing where an object is $\quad \rightarrow \quad$ a position graph at different times
- Visualizing how fast an object is moving \rightarrow a velocity graph at different times
- Position graph
\rightarrow velocity graph

$$
\text { slopes } \quad\langle v\rangle=\frac{\Delta x}{\Delta t} \quad v=\frac{d x}{d t}
$$

- Velocity graph \rightarrow position graph

$$
\text { areas } \quad \Delta x=v \Delta t \quad \Delta x=\int v d t
$$

Figuring out velocity

- We have looked at the $x-y, x-t$, and $y-t$ plots.
- Velocity is the derivative of the position wrt time. Which plots can we get velocity from? Why?

Does the derivative stuff work?

If the velocity is a linear function $v(t)=a t+b$
of time what do you expect
the position to look like?
$\frac{d x}{d t}=a t+b \quad x(t)=?$

(s)	(m)	(m)	$(\mathrm{m} / \mathrm{s})$	$(\mathrm{m} / \mathrm{s})$
0.1333	2.253	$1.483-3.559$	0.788	
0				

\longrightarrow
$\begin{array}{llllll}0.1667 & 2.126 & 1.513 & -3.333 & 1.461\end{array}$

7	0.2000	2.030	1.585	-3.067
8	1.974			
8	0.2333	1.288	1.657	-2.97

8	0.2333	1.928	1.657	-2.917	2.084
9	0.2667	1.831	1.730	-2.656	1.969

9	0.2667	1.831	1.730	-2.656
10.969				
10	0.3000	1.747	1.796	-2.309

11	0.3000	1.74	1.796	-2.309	1.597
11	0.3333	1.681	1.832	-2.058	1.291

| 12 | 0.3667 | 1.614 | $1.886-1.958$ | 0.869 |
| :--- | :--- | :--- | :--- | :--- | :--- |

13 lllllllll $1.40001 .5541 .892-1.998 \quad 0.417$

