A student measures distance x to be 5 meters and area A to be $25 \mathrm{ft}^{2}$.
Discuss with neighbors which of the following are true; then vote for all that are true.

1. $\left[x^{2}\right]=[A]$
2. $[5 x]=A$
3. $x^{2}=[A]$
4. $x^{2}=A$
5. None of the above

As part of an exam a few years ago, a student wrote the following derivation of a final result. Without knowing the problem, but knowing the dimensions of each quantity shown along the bottom can you determine:

Is equation D correct?

1. Yes
2. No
3. Can't tell

Given that equation D is NOT correct, can you tell which is the first line that has an error?

$$
\begin{aligned}
& \text { A. } \quad M g h=\frac{1}{2} M v^{2}+\frac{1}{2} I \omega^{2} \\
& \text { B. } \quad M g h=\frac{1}{2} M v^{2}+\frac{1}{2}\left(M R^{2}\right) \omega^{2}
\end{aligned}
$$

$$
\text { C. } \quad M g h=\frac{1}{2} M v^{2}+\frac{1}{2}\left(M R^{2}\right)\left(\frac{v^{2}}{R}\right)^{2}
$$

$$
\text { D. } \quad g h=\frac{1}{2} v^{2}+\frac{1}{2} v^{4}
$$

$[M]=\mathbf{M} \quad[g]=\mathbf{L} / \mathbf{T}^{2} \quad[h]=\mathrm{L} \quad[\omega]=/ \mathbf{T} \quad[v]=\mathrm{L} / \mathrm{T} \quad[R]=\mathrm{L} \quad[I]=\mathrm{ML}^{2}$

- The diffusion constant D, describes how molecules jiggling around in a fluid drift. It has dimensions

$$
[D]=\mathrm{L}^{2} / \mathrm{T}
$$

■ We have good reason to believe (we'll see it in a reading later) that D depends on the average distance a molecules travels, λ, and it's average speed v.
■ If $[\lambda]=\mathrm{L}$ and $[v]=\mathrm{L} / \mathrm{T}$ guess an equation that expresses D in terms of λ and v.

