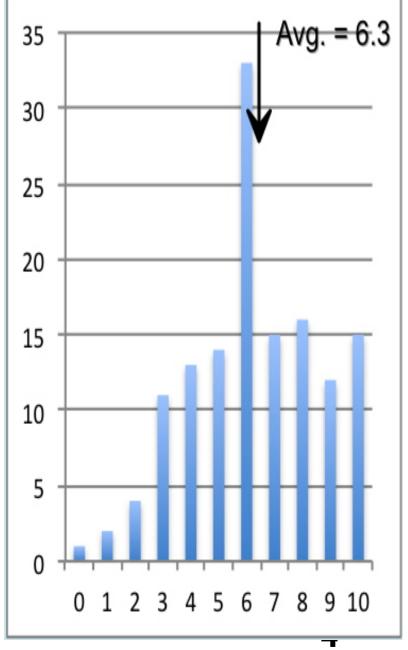

■ Theme Music: Peggy Lee Fever

■ Cartoon: Jef Mallett

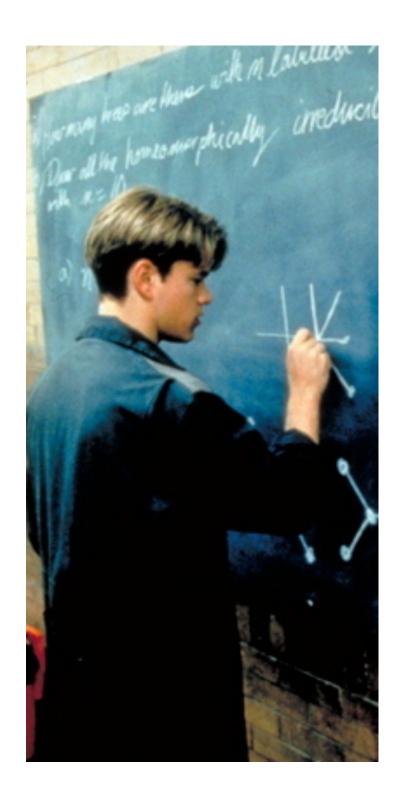
Frazz.

Outline


- Go over Quiz 10
- What do we mean by temperature?
- Heat capacity and specific heat

Results from all Exams

	#1	#2	#3	#4	#5
Exam 1	91%	73%	58%	51%	66%
Exam 1MU	47%	37%	48%	54%	66%
Exam 2	72%	79%	37%	58%	74%
Exam 2MU	62%	50%	39%	59%	58%


Quiz 10

	1.1	1.2	2.1	2.2
1	5%	9%	1%	18%
2	46%	10%	90%	8%
3	5%	21%	8%	65%
4	31%	41%	1%	4%
5	11%	16%		5%
6	1%	3%		0%
7	0%			

12/4/15

Physics 131

The Equation of the Day

Heat and temperature

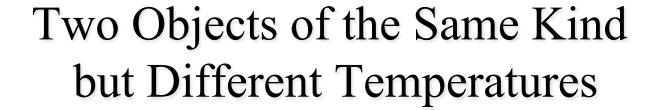
$$Q = mc\Delta T$$

"The kind of motion we call heat"

- We have a natural sense of hot and cold.
- In the 19th century it was learned that the warmth of an object was a measure of a kind of random internal motion of the object's atoms.
- It was found that there was a surprisingly large amount of "hidden" energy that objects possessed as a result of their temperature and that under the right conditions, this energy could be put to work.

Real-World Intuition 1:

– If we have a cup of hot water and a cup of cold water and we put them aside for a while, what will happen to them?



Real-World Intuition 2 How do objects exchange hot and cold?

- When two amounts of water at different temperatures are combined, they come to a temperature somewhere in between.
- We expect that the amount of each kind of water determines the final temperature.
- Try it!
 - Case 1: Equal amounts of water
 - Case 2: Different amounts of water

Physical idea:

The bigger mass changes its temp less in proportion.

$$\frac{m_1}{m_2} = \frac{\Delta T_2}{\Delta T_1}$$

$$m_1 \Delta T_1 = -m_2 \Delta T_2$$
 $m_1 (T_f - T_1) = m_2 (T_2 - T_f)$
 $m_1 T_f - m_1 T_1 = m_2 T_2 - m_2 T_f$

 $m_1 T_f + m_2 T_f = m_1 T_1 + m_2 T_2$

the changes in temp are opposite one goes up the other goes down

$$T_f = \frac{m_1 T_1 + m_2 T_2}{m_1 + m_2} = \left(\frac{m_1}{M}\right) T_1 + \left(\frac{m_2}{M}\right) T_2$$

Implications

- From the equation $m_1 \Delta T_1 = -m_2 \Delta T_2$
 - it looks like something is being transferred from the hot object to the cold object
 - it looks like temperature is kind of
 a "density of hotness." You have to multiply
 by the mass to get the "amount of hotness"
 transferred.
- We will call the thing being transferred "thermal energy."

What if we have different kinds of stuff?

- What happens if we have equal masses of water and something else a copper cylinder, say?
- What's your intuition here?
 - Will the temperature settle down to halfway between?
 - Will it be closer to the water's temperature?
 - Will it be closer to the copper's temperature?
- Try it!

Thermal Energy is NOT Temperature

- Even if the masses are the same, the temperature does not wind up halfway between.
- Each kind of material translates thermal energy into temperature in its own way.

$$m_1 c_1 \Delta T_1 = -m_2 c_2 \Delta T_2$$

Physics 131

Specific Heat and Heat Capacity

■ The amount of thermal energy needed to produce one degree of temperature change is an object is called its <u>heat capacity</u>.

$$Q = C\Delta T$$

■ The amount of thermal energy per unit mass needed to produce one degree of temperature change in an object is called its <u>specific heat</u>.

$$C = mc$$

Scales and Units

- 1 cal = the amount of thermal energy needed to change the temperature of 1 gm of water by 1 degree C (from 14.5° to 15.5°) (by definition)
- \blacksquare 1 Cal = 1000 cal
- \blacksquare 1 Cal = 4184 J

Reinterpreting Our Results

When two objects at different temperature are put together, thermal energy flows from the hotter body to the colder body until their temperatures

When two objects at
$$Q = m_1 c_1 \Delta T_1 = m_1 c_1 (T_f - T_1^i)$$
 different temperature $-Q = m_2 c_2 \Delta T_2 = m_2 c_2 (T_f - T_2^i)$ are put together, $m_1 c_1 (T_f - T_1^i) = -m_2 c_2 (T_f - T_2^i)$ thermal energy flows from the hotter body to the colder body $T_f = \left(\frac{m_1 c_1}{m_1 c_1 + m_2 c_2}\right) T_1 + \left(\frac{m_2 c_2}{m_1 c_1 + m_2 c_2}\right) T_2$ until their temperatures are the same. $(0^{\text{th}} \text{ Law})$ $T_f = \left(\frac{C_1}{C_1 + C_2}\right) T_1 + \left(\frac{C_2}{C_1 + C_2}\right) T_2$

Foothold ideas: 1

- Temperature is a measure of how hot or cold something is. (We have a natural physical sense of hot and cold.)
- When two objects are left in contact for long enough they come to the same temperature.
- When two objects of the same material but different temperatures are put together they reach an average, weighted by the fraction of the total mass.
- The mechanism responsible for the above rule is that the same thermal energy is transferred from one object to the other: Q proportional to $m\Delta T$.

19

Foothold ideas: 2

- When two objects of different materials and different temperatures are put together they come to a common temperature, but it is not obtained by the simple rule.
- \blacksquare Each object translates thermal energy into temperature in its own way. This is specified by a density-like quantity, c, the specific heat.
- The heat capacity of an object is C = mc.
- When two objects of different material and different temperatures are put together they reach an average, weighted by the fraction of the total heat capacity.
- When heat is absorbed or emitted by an object $Q = \pm mc\Delta T$ Physics 131

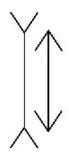
 20

Example:

A copper pot with a mass of 2 kg is sitting at room temperature (20°C). If 200 g of boiling water (100°C) are put in the pot, after a few minutes the water and the pot come to the same temperature. What temperature is this?

We made a number of simplifying but unrealistic assumptions that could affect the final value of the temperature. Name three.

Real-World Intuition 1:


Reconsidered

– If we have a cup of hot water and a cup of cold water and we put them aside for a while, what will happen to them?

– If you touch the cloth part of your chair and the metal part, which feels warmer?

