■ Theme Music: Robert Alda

Luck Be a Lady (from Guys & Dolls)

■ Cartoon: Bill Amend

FoxTrot

	1	2	3
а	68%	0%	28 %
b	17%	10%	62 %
C	15%	90%	9%
d	0%	0%	1%
е	0%		

	4
b>d>a>c	11%
c>a>b=d	16%
b>a>d>c	8%
a>c>b=d	5%
b=c=d>a	4%
a>b=d>c	4%
b=c=d>a	4%

Quiz 6

Foothold idea: Coulomb's Law

$$\vec{F}_{q \to Q} = -\vec{F}_{Q \to q} = \frac{k_C qQ}{r_{qQ}^2} \hat{r}_{q \to Q}$$

■ $k_{\rm C}$ is put in to make the dimensions come out right.

$$\begin{bmatrix} k_C \end{bmatrix} = \begin{bmatrix} Fr^2 \\ q_1q_2 \end{bmatrix} = \frac{ML}{T^2} \frac{L^2}{Q^2} = \frac{ML^3}{Q^2T^2}$$

Adding forces for many charges!

$$\vec{F}_{q} = \vec{F}_{Q_{1} \to q} + \vec{F}_{Q_{2} \to q} + \vec{F}_{Q_{3} \to q} + \vec{F}_{Q_{4} \to q} + \dots$$

$$\vec{F}_{q} = \frac{k_{C}qQ_{1}}{r_{1}^{2}}\hat{r}_{1} + \frac{k_{C}qQ_{2}}{r_{2}^{2}}\hat{r}_{2} + \frac{k_{C}qQ_{3}}{r_{3}^{2}}\hat{r}_{3} + \frac{k_{C}qQ_{4}}{r_{4}^{2}}\hat{r}_{4} + \dots$$

where

 $r_1 = \text{distance from } Q_1 \text{ to } q$

 r_2 = distance from Q_2 to q

 $\hat{r}_1 = \text{direction from } Q_1 \text{ to } q \text{ (mag. 1, no units!)}$

 \hat{r}_2 = direction from Q_2 to q (mag. 1, no units!)

...